Study reveals critical role of evolutionary processes in species coexistence and diversity

May 19, 2009

Santa Barbara, California - A team of researchers, addressing long-standing conflicts in ecology and evolutionary science, has provided key directions for the future of community ecology. The team comprehensively synthesized emerging work that applies knowledge of evolutionary relationships among different species--phylogenetics--to understanding species interactions, ecosystems and biodiversity.

The work, published online in Ecology Letters, was conducted by a subgroup of researchers participating in an interdisciplinary working group convened by the National Center for Ecological Analysis and Synthesis (NCEAS) at the University of California, Santa Barbara. The research was supported by funding from NCEAS, the Long-Term Ecological Research Network Office, the National Science Foundation and the Natural Sciences and Engineering Research Council of Canada.

"For a long time, ecologists ignored the importance of evolutionary processes in understanding how species coexist and how diversity is maintained," said Jeannine Cavender-Bares, a professor at the University of Minnesota, and lead author of the study. "But ecological processes we observe in the present are deeply influenced by evolutionary processes in the past. Thanks to the increasing availability of large DNA and phylogenetic databases, we now have the tools to bring an evolutionary perspective into ecology."

NCEAS hosts hundreds of scientists a year who analyze vast amounts of existing information from numerous prior research studies, in order to look for patterns and make new discoveries. This approach is especially effective for addressing complicated questions like this one.

The researchers synthesized over 180 major studies from both fields, and developed a comprehensive overview of the forces driving community organization, and the role evolution plays in the assembly of these communities.

"What's truly exciting is how we are beginning to accumulate evidence that community structure and interactions through time can feedback to promote or constrain diversification of species," said Ken Kozak, also a professor at the University of Minnesota. The blurring of boundaries between classical community ecology and biogeography has been key to recent progress in community ecology."

"Essentially, we're going back to the perspective of early naturalists, but with a computational rigor that was never before possible," according to Cavender-Bares. "This basic understanding of the causes and consequences of community structure has never been more important."

In the face of increasing habitat destruction around the world, these tools will prove critical to managing and restoring Earth's flora and fauna.
-end-


Wiley

Related Ecosystems Articles from Brightsurf:

Radical changes in ecosystems
Earth and all the living organisms on it are constantly changing.

Global warming will cause ecosystems to produce more methane than first predicted
New research suggests that as the Earth warms natural ecosystems such as freshwaters will release more methane than expected from predictions based on temperature increases alone.

Fresh groundwater flow important for coastal ecosystems
Groundwater is the largest source of freshwater, one of the world's most precious natural resources and vital for crops and drinking water.

Re-thinking 'tipping points' in ecosystems and beyond
Abrupt environmental changes, known as regime shifts, are the subject of new research in which shows how small environmental changes trigger slow evolutionary processes that eventually precipitate collapse.

Even after death, animals are important in ecosystems
Animal carcasses play an important role in biodiversity and ecosystem functioning.

Natural ecosystems protect against climate change
The identification of natural carbon sinks and understanding how they work is critical if humans are to mitigate global climate change.

Viruses as modulators of interactions in marine ecosystems
Viruses are mainly known as pathogens - often causing death.

How to prevent mosquitofish from spreading in water ecosystems
Preventing the introduction of the mosquitofish and removing its population are the most effective actions to control the dispersal of this exotic fish in ponds and lakes, according to a study published in the journal Science of the Total Environment.

Mount Kilimanjaro: Ecosystems in global change
Land use in tropical mountain regions leads to considerable changes of biodiversity and ecological functions.

The fiddlers influencing mangrove ecosystems
The types of bacteria living in and around fiddler crab burrows vary widely between mangroves, but their functional activities are remarkably similar.

Read More: Ecosystems News and Ecosystems Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.