Mars mineral could be linked to microbes

May 19, 2014

Scientists have discovered that the earliest living organisms on Earth were capable of making a mineral that may be found on Mars.

The clay-mineral stevensite has been used since ancient times and was used by Nubian women as a beauty treatment, but scientists had believed deposits could only be formed in harsh conditions like volcanic lava and hot alkali lakes.

Researchers led by Dr Bob Burne from The Australian National University (ANU) have found living microbes create an environment that allows stevensite to form, raising new questions about the stevensite found on Mars.

"It's much more likely that the stevensite on Mars is made geologically, from volcanic activity," Dr Burne said.

"But our finding - that stevensite can form around biological organisms - will encourage re-interpretation of these Martian deposits and their possible links to life on that planet."

Dr Burne and his colleagues from ANU, University of Western Australia (UWA) and rock imaging company Lithicon, have found microbes can become encrusted by stevensite, which protects their delicate insides and provides the rigidity to allow them to build reef-like structures called "microbialites".

"Microbialites are the earliest large-scale evidence of life on Earth," Dr Burne said.

"They demonstrate how microscopic organisms are able to join together to build enormous structures that sometimes rivalled the size of today's coral reefs."

He said the process still happens today in some isolated places like Shark Bay and Lake Clifton in Western Australia.

"Stevensite is usually assumed to require highly alkaline conditions to form, such as volcanic soda lakes. But our stevensite microbialites grow in a lake less salty than seawater and with near-neutral pH."

One of the paper's authors, Dr Penny King from ANU, is a science co-investigator on NASA's Mars Curiosity rover, which uncovered the presence of possible Martian stevensite.

The findings also have implications for how some of the world's largest oil reservoirs were formed.
-end-
The discovery was made using ANU-developed imaging technology licensed to Lithicon. The data was run on Raijin, the most powerful supercomputer in the Southern Hemisphere, based at the National Computational Infrastructure in Canberra.

Australian National University

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.