Nav: Home

Nerve cells use each other as maps

May 19, 2015

When nerve cells form in an embryo they do not start off in the right place but have to be guided to their final position by navigating a kind of molecular and cellular "map" in order to function properly. In a recent research study published in Nature Communications neurobiologist Sara Wilson, Umeå University, found that during embryonic development different parts of the nerve cell are important for guiding other nerve cells into their physical positions.

"We found nerve cells do this in two ways, either acting as barriers preventing cell bodies to move further than they need to, or by acting as guides opening a corridor that the cell bodies can travel along", she says.

The nervous system is analogous to a biological "computer" with different nerve cells forming connections that continuously send neural information around the spinal cord, brain and body and back again. Each nerve cell has a kind of "GPS coordinate" and exactly where nerve cells are physically located is very important so they can connect correctly with other nerve cells.

When nerve cells are in the wrong place neural information is not transmitted properly and it results in dysfunction and neurodevelopmental disorders such as lissencephaly, Kallmann syndrome and periventricular heterotopia. These misplacements can also happen in very common developmental disorders such as dyslexia and autistic spectrum disorders but it is not fully clear what role such misplacements play in these cases.

"Because nerve cell position is so important in normal nervous system function and dysfunction we wanted to find out how nerve cells position themselves in the first place. This study uncovered an exciting new mechanism for how this happens" Sara Wilson says.

Two of the main parts of a nerve cell are the central part (called the cell body) and a very long part like a "wire" (called the axon) that connects with and sends information to other nerve cells. It is important for both of these parts to be in the right place to get the nervous system to work properly.

The axons usually group together and form structures similar to corridors heading in a certain direction. Using genetic changes in mouse embryos to disrupt these axonal corridors (make them head in a different direction), her research group at Umeå Centre of Molecular Medicine, now at the Department of Molecular Biology, Umeå University, found that cell bodies from nerve cells also end up in the wrong place.

"This means the axons from some nerve cells are influencing the position of the cell bodies of other nerve cells meaning that the nerve cells are creating a "map" for other nerve cells to find their way" Sara Wilson says.

"This is the first time that axons have been shown to act as barriers and it could have important implications for understanding how the nervous system forms in all animals, including humans" Sara Wilson concludes.

Overall, this work and other work from the group focuses on understanding the mechanisms (genetic, cellular and molecular) of how the precise "anatomy" of the nervous system first forms and how that influences neuronal function and dysfunction. This basic science research has important medical implications for understanding the cause of some neurodevelopmental disorders: For example do the genes that are associated with such disorders generally control cell body guidance and is that what leads to dysfunction?

"It can also give clues as to how to grow axons during regeneration following damage or disease of the nervous system. Can we "force" regenerating neurons to connect properly? In the future, we plan to continue this basic research and find medical research teams to collaborate with to see if our findings are beneficial in these medical contexts" Sara Wilson says.
-end-
About the study: Laumonnerie, C. Tong, Y.G., Alstermark, H. and Wilson S.I. Commissural axonal corridors instruct neuronal migration in the mouse spinal cord. Nature Communications. 2015, 6:7028, doi: 10.1038/ncomms8028.

Umea University

Related Nerve Cells Articles:

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.
Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.
Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.
How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.
Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.
Nerve cells in the human brain can 'count'
How do we know if we're looking at three apples or four?
How rabies virus moves through nerve cells, and how it might be stopped
Researchers found that the rabies virus travels through neurons differently than other neuron-invading viruses, and that its journey can be stopped by a drug commonly used to treat amoebic dysentery.
Direct conversion of non-neuronal cells into nerve cells
Researchers of the Mainz University Medical Center discovered that on the way to becoming neurons pericytes need to go through a neural stem cell-like state.
More Nerve Cells News and Nerve Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.