Avoiding mixtures of different mitochondria leads to effective mitochondrial replacement

May 19, 2016

New York, NY (May 19, 2016) - Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute discovered an important biological phenomenon in human cells that will help scientists and clinicians design safer treatments to prevent mitochondrial diseases. NYSCF first pioneered a technique, mitochondrial replacement therapy (MRT), in 2012 to prevent inheritance of these devastating and debilitating diseases. Now, scientists at the NYSCF Research Institute and Columbia University are working to hone this technique and understand the biological processes that would impact patients as this process is brought into clinical trials.

Mitochondria function as cellular batteries. People born with malfunctioning mitochondria experience a spectrum of symptoms potentially resulting in childhood death, including stunted development, neurological disorders, heart disorders, and stomach and digestive problems. Published in Cell Stem Cell, Dr. Dieter Egli, Senior Research Fellow at the NYSCF Research Institute and an assistant professor at Columbia University College of Physicians and Surgeons, and his colleagues transferred nuclear DNA into cells from different donors to understand more about MRT and its clinical applications. Dr. Egli explained, "This is one more step towards the therapeutic application of mitochondrial replacement and informs us how MRT is best conducted clinically."

Working in close collaboration with Drs. Michio Hirano and Mark Sauer and their teams at Columbia University Medical Center, this research continues to lay the groundwork for future clinical trials by showing that mitochondria from an individual can successfully be replaced with mitochondria from any unrelated donor. They found that nuclear DNA and mitochondrial DNA from different individuals are compatible. This alleviates a common concern regarding MRT-- that replacing diseased mitochondria with healthy mitochondria from a different individual may prove incompatible--and brings a critical piece of information requisite to translating this innovative preventive treatment to patients waiting to build families.

"For women who are affected with these diseases, this work brings hope that they will have access to therapies that will allow them to have healthy children. Since our initial work with MRT, we have advocated for the FDA to permit clinical trials that enable women to prevent their children from inheriting mitochondrial diseases. I hope this research provides further evidence to the FDA to approve this work for clinical application," explained Susan L. Solomon, Co-Founder and CEO of The New York Stem Cell Foundation.

The researchers made an important discovery, finding that during the transfer of nuclear DNA into donor cells with healthy mitochondria there may be some carry-over of mitochondria from the donor individual's cells. The resulting cells may contain two different types of mitochondria. Sometimes the carried-over mitochondria decrease in quantity and becomes barely detectable or are eliminated altogether as the cells grow and divide. However, in rare circumstances, these transferred mitochondria increase in quantity as cells divide, negating the replacement of the affected mitochondria.

To combat the potential adverse outcome Dr. Egli, a NYSCF - Robertson Stem Cell Investigator suggests, "In order to prevent the transmission of mitochondrial diseases, we need to avoid competitive situations between mitochondrial genotypes of the parent and of the mitochondrial donor. The co-existence of the two-mitochondrial types within one cell must be avoided through minimizing or even eliminating carry-over during transfer."

Another important discovery from this work revealed that scientists can freeze the eggs that contain the nuclear DNA for mitochondrial replacement. A key insight allowing doctors to avoiding having to sync ovulation between the patient and donor for effective treatment when MRT is brought to clinical trials.
Dr. Mitsutoshi Yamada, formerly a Postdoctoral Fellow at the New York Stem Cell Foundation Research Institute, was the first author on the study and is now at Keio University School of Medicine in Japan.

About the New York Stem Cell Foundation

The New York Stem Cell Foundation (NYSCF) is an independent organization founded in 2005 to accelerate cures and better treatments for patients through stem cell research. NYSCF employs over 45 researchers at the NYSCF Research Institute, located in New York, and is an acknowledged world leader in stem cell research and in developing pioneering stem cell technologies, including the NYSCF Global Stem Cell ArrayTM. Additionally, NYSCF supports another 75 researchers at other leading institutions worldwide through its Innovator Programs, including the NYSCF -- Druckenmiller Fellowships and the NYSCF -- Robertson Investigator Awards. NYSCF focuses on translational research in a model designed to overcome the barriers that slow discovery and replaces silos with collaboration. For more information, visit http://www.nyscf.org

New York Stem Cell Foundation

Related Mitochondria Articles from Brightsurf:

Researchers improve neuronal reprogramming by manipulating mitochondria
Researchers at Helmholtz Zentrum M√ľnchen and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism.

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.