Nav: Home

Sea level as a metronome of Earth's history

May 19, 2017

Sedimentary layers record the history of the Earth. They contain stratigraphic cycles and patterns that precisely reveal the succession of climatic and tectonic conditions that have occurred over millennia, thereby enhancing our ability to understand and predict the evolution of our planet. Researchers at the University of Geneva (UNIGE), Switzerland, -- together with colleagues at the University of Lausanne (UNIL) and American and Spanish scientists -- have been working on an analytical method that combines observing deep-water sedimentary strata and measuring in them the isotopic ratio between heavy and light carbon. They have discovered that the cycles that punctuate these sedimentary successions are not, as one might think, due solely to the erosion of mountains that surround the basin, but are more ascribable to sea level changes. This research, which you can read in the journal Geology, paves the way for new uses of isotopic methods in exploration geology.

The area south of the Pyrenees is particularly suitable for studying sedimentary layers. Rocks are exposed over large distances, allowing researchers to undertake direct observation. Turbidites can be seen here: large sediment deposits formed in the past by underwater avalanches consisting of sand and gravel. "We noticed that these turbidites returned periodically, about every million years. We then wondered what the reasons for this cyclicity were", explains Sébastien Castelltort, professor in the department of earth sciences in UNIGE's faculty of sciences.

The ups and downs of oceans regulate sedimentation cycles

The geologists focused their attention on Eocene sedimentary rocks (about 50 million years ago), which was particularly hot, and undertook the isotopic profiling of the sedimentary layers. "We took a sample every 10 metres," says Louis Honegger, a researcher at UNIGE, "measuring the ratio between 13C (heavy carbon stable isotope) and 12C (light carbon stable isotope). The ratio between the two tells us about the amount of organic matter, the main consumer of 12C, which is greater when the sea level is high. The variations in the ratio helped us explore the possible link with the sea level". The research team found that the turbidite-rich intervals were associated with high 12C levels, and almost always corresponded to periods when the sea level was low. It seems that sedimentary cycles are mainly caused by the rise and fall of the sea level and not by the episodic growth of mountains.

When the sea level is high, continental margins are flooded under a layer of shallow water. Since the rivers are no longer able to flow, they begin to deposit the sediments they carry there. This is why so little material reaches the deep basins downstream. When the sea level is low, however, rivers erode their beds to lower the elevation of their mouth; they transfer their sediment directly to the continental slopes of the deep basins, creating an avalanche of sand and gravel. Consequently, if the variations of the sea level are known, it is possible to predict the presence of large sedimentary accumulations created by turbidites, which often contain large volumes of hydrocarbons, one of the holy grails of exploration geology.

Measuring stable carbon isotopes: a new indicator of reservoir rocks

The research provides a new role for the use of carbon isotopes. "From now on, continues Castelltort, we know that by calculating the ratio between 13C and 12C sampled in similar slope deposits close to continents, we can have an indication of the sea level, which means it's possible to better predict the distribution of sedimentary rocks in our subsurface". In addition, this measurement is relatively simple to perform and it provides accurate data -- a real asset for science and mining companies. The study also highlights the importance of sea levels, which are a real metronome for the Earth's sedimentary history. "Of course," concludes Honegger, "tectonic deformation and erosion are important factors in the formation of sedimentary layers; but they play a secondary role in the formation of turbidite accumulations, which are mainly linked to changes in the sea level".
-end-


Université de Genève

Related Sea Level Articles:

Researchers untangle causes of differences in East Coast sea level rise
For years, scientists have been warning of a so-called 'hot spot' of accelerated sea-level rise along the northeastern US coast, but understanding the causes has proven challenging.
Sea level as a metronome of Earth's history
Sedimentary layers contain stratigraphic cycles and patterns that precisely reveal the succession of climatic and tectonic conditions that have occurred over millennia.
Migration from sea-level rise could reshape cities inland
Researchers estimate that approximately 13.1 million people could be displaced by rising ocean waters.
Short-lived greenhouse gases cause centuries of sea-level rise
Even if there comes a day when the world completely stops emitting greenhouse gases into the atmosphere, coastal regions and island nations will continue to experience rising sea levels for centuries afterward, according to a new study by researchers at MIT and Simon Fraser University.
Climate change could trigger strong sea level rise
About 15,000 years ago, the ocean around Antarctica has seen an abrupt sea level rise of several meters.
Historical records may underestimate global sea level rise
New research from scientists at University of Hawai'i at Mānoa, Old Dominion University, and the NASA Jet Propulsion Laboratory shows that the longest and highest-quality records of historical ocean water levels may underestimate the amount of global average sea level rise that occurred during the 20th century.
Volcanic eruption masked acceleration in sea level rise
The cataclysmic 1991 eruption of Mount Pinatubo in the Philippines masked the full impact of greenhouse gases on accelerating sea level rise, according to a new study.
Pacific sea level predicts global temperature changes
Sea level changes in the Pacific Ocean can be used to estimate future global surface temperatures, according to a new paper in Geophysical Research Letters.
Climate change already accelerating sea level rise, study finds
Greenhouse gases are already having an accelerating effect on sea level rise, but the impact has so far been masked by the cataclysmic 1991 eruption of Mount Pinatubo in the Philippines, according to a new study led by NCAR.
As sea level rises, Hudson River wetlands may expand
In the face of climate change impact and inevitable sea level rise, Cornell and Scenic Hudson scientists studying New York's Hudson River estuary have forecast new tidal wetlands, comprising perhaps 33 percent more wetland area by the year 2100.

Related Sea Level Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...