Nav: Home

New hope for slow-healing wounds

May 19, 2017

MicroRNAs are small gene fragments which bond onto target structures in cells and in this way prevent certain proteins from forming. As they play a key role in the occurrence and manifestation of various diseases, researchers have developed what are known as antimiRs, which block microRNA function. The disadvantage of this approach is, however, that the blockade can lead to side effects throughout the entire body since microRNAs can perform different functions in various organs. Researchers at Goethe University Frankfurt have now solved this problem.

The research groups led by Professor Alex Heckel and Professor Stefanie Dimmeler of the Cluster of Excellence Frankfurt Macromolecular Complexes have developed antimiRs that can be activated very effectively over a limited local area by using light of a specific wavelength. To this purpose, the antimiRs were locked in a cage of light-sensitive molecules that disintegrate as soon as they are irradiated with light of a specific wavelength.

As a means of testing the therapeutic effect of these new antimiRs, the researchers chose microRNA-92a as the target structure. This is frequently found in diabetes patients with slow-healing wounds. They injected the antimiRs in the light-sensitive cage into the skin of mice and then released the therapeutic agent into the tissue with the help of light. Together the research groups were able to prove that pinpointed activation of an antimiR against microRNA-92a helps wounds to heal.

"Apart from these findings, which prove for the first time that wound healing can be improved by using antimiRs to block microRNA-92a, our data also confirms that microRNA-92a function is indeed only locally inhibited. Other organs, such as the liver, were not affected", says Professor Stefanie Dimmeler, underlining the trials' clinical significance.

The researchers now want to see whether they can also expand the use of light-inducible antimiRs to the treatment of other diseases. In particular they want to examine whether toxic antimiRs can attack tumors locally as well.
-end-


Goethe University Frankfurt

Related Wound Healing Articles:

Here's how cancer hijacks wound healing to create its own blood supply
Researchers at the University of Virginia School of Medicine have shed light on how cancers hijack the body's natural wound-healing response to grow and spread.
Wearable sensors mimic skin to help with wound healing process
Researchers at Binghamton University, State University of New York, have developed skin-inspired electronics to conform to the skin, allowing for long-term, high-performance, real-time wound monitoring in users.
New materials could 'drive wound healing' by harnessing natural healing methods
Imperial researchers have developed new bioinspired material that interacts with surrounding tissues to promote healing.
E-bandage generates electricity, speeds wound healing in rats
Skin has a remarkable ability to heal itself. But in some cases, wounds heal very slowly or not at all, putting a person at risk for chronic pain, infection and scarring.
Novel combination therapy promotes wound healing
By incorporating a gene-suppressing drug into an over-the-counter gel, researchers at Albert Einstein College of Medicine and their colleagues cut healing time by half and significantly improved healing outcomes compared to control treatments.
More Wound Healing News and Wound Healing Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...