Nav: Home

Tau prevents synaptic transmission at early stage of neurodegeneration

May 19, 2017

Tau proteins are involved in more than twenty neurodegenerative diseases, including various forms of dementia. These proteins clump together in patients' brains to form neuronal tangles: protein aggregation that eventually coincides with the death of brain cells. Prof. Patrik Verstreken's research team (VIB-KU Leuven) has now discovered how tau disrupts the functioning of nerve cells, even before it starts forming tangles. They immediately suggest a way to intervene in this process.

Tau proteins are best known as the proteins that are stacked to form neuronal "tangles" in Alzheimer's patients' brains, but they also play a role in many other brain disorders such as Parkinson's and Huntington's disease. In healthy circumstances, tau proteins are connected to the cytoskeleton of nerve cells, where they support the cells' structural stability. In the nerve cells of patients, however, tau is dislodged from the cytoskeleton and ultimately tangles together to form protein accumulations that disrupt the nerve cell's functioning.

Early spoilsport

But even before these protein accumulations are formed, the dislodged tau impedes the communication between nerve cells. VIB's research team has described a new mechanism for this in the journal Nature Communications.

Professor Patrik Verstreken (VIB-KU Leuven) explains: "We have demonstrated that when mutant tau dislodges from the cytoskeleton, it mainly settles at the synapses of the nerve cells. This was not only the case in fruit flies and rats but also in the brain cells of human patients. Vesicles containing chemicals are released at these synapses, which serve as the means of communication between two different nerve cells. When tau settles at the synapse, it locks onto the vesicles, inhibiting synaptic transmission."

Fundamental research with prospects for therapeutic applications

These new insights are the result of a close collaboration between different laboratories at VIB, the universities of Leuven, Louvain-la-Neuve (both in Belgium), and Edinburgh (UK), and with researchers from Janssen Pharmaceutica. They pave the way for a possible treatment.

"Now that we know how tau inhibits synaptic transmission, we can look for ways to prevent it." Patrik Verstreken already provided proof of principle: "If we stop tau from locking onto the vesicles in the nerve cells of rats and fruit flies, we can prevent the inhibition of synaptic transmission and also the death of nerve cells." Further research should reveal whether this strategy will also be useful for patients.
-end-
Publication

Tau association with synaptic vesicles causes presynaptic dysfunction, Zhou et al., Nature Communications 2017

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: patienteninfo@vib.be. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

VIB (the Flanders Institute for Biotechnology)

Related Nerve Cells Articles:

How hearing loss can change the way nerve cells are wired
Even short-term blockages in hearing can lead to remarkable changes in the auditory system, altering the behavior and structure of nerve cells that relay information from the ear to the brain, according to a new University at Buffalo study.
Lab-grown nerve cells make heart cells throb
Researchers at Johns Hopkins report that a type of lab-grown human nerve cells can partner with heart muscle cells to stimulate contractions.
Nerve-insulating cells more diverse than previously thought
Oligodendrocytes, a type of brain cell that plays a crucial role in diseases such as multiple sclerosis, are more diverse than have previously been thought, according to a new study by researchers at Karolinska Institutet in Sweden.
Aggregated protein in nerve cells can cause ALS
Persons with the serious disorder ALS, can have a genetic mutation that causes the protein SOD1 to aggregate in motor neurons in the brain and spinal cord.
Aggression causes new nerve cells to be generated in the brain
A group of neurobiologists from Russia and the USA, including Dmitry Smagin, Tatyana Michurina, and Grigori Enikolopov from Moscow Institute of Physics and Technology, have proven experimentally that aggression has an influence on the production of new nerve cells in the brain.
Researchers grow retinal nerve cells in the lab
Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain.
Nerve cells warn brain of damage to the inner ear
Some nerve cells in the inner ear can signal tissue damage in a way similar to pain-sensing nerve cells in the body, according to new research from Johns Hopkins.
It takes a lot of nerve: Scientists make cells to aid peripheral nerve repair
Peripheral nerve injuries, such as those resulting from neuropathies, physical trauma or surgery, are common and can cause partial or complete loss of nerve function and a reduced quality of life.
Nerve cells use each other as maps
When nerve cells form in an embryo they have to be guided to their final position by navigating a kind of molecular and cellular 'map' in order to function properly.
What hundreds of biomolecules tell us about our nerve cells
Researchers at the Luxembourg Centre for Systems Biomedicine, of the University of Luxembourg, have, under Dr.

Related Nerve Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".