Nav: Home

Insects resist genetic methods to control disease spread, Indiana University study finds

May 19, 2017

BLOOMINGTON, Ind. - Researchers are exploring the use of the revolutionary gene-editing tool CRISPR-Cas9 to fight human disease and agricultural blight. But a study from Indiana University has found several challenges to the method's use in saving lives and crops.

The research, reported today in the journal Science Advances, combines advanced genetic and statistical analyses to show how certain genetic and behavioral qualities in disease-carrying insects, like mosquitoes, make these species resistant to genetic manipulation.

This resistance could complicate attempts to use CRISPR-Cas9 in the fight against malaria -- a deadly mosquito-borne disease that threatens over 3 billion people worldwide -- or crop blights such as the western corn rootworm, an invasive species that costs the U.S. about $1 billion in lost crops each year.

The discovery of the CRISPR-Cas9 system -- or simply "CRISPR" -- in the early 2010s introduced an unprecedented level of accuracy in genetic editing. Scientists can use the method to design highly precise genetic "scissors" that snip out and replace specific parts of the genome with sequences of their choosing. Two English scientists were the first to show the method could spread infertility in disease-carrying mosquitoes in late 2015.

"We found that small genetic variation within species -- as well as many insects' tendency to inbreed -- can seriously impact the effectiveness of attempts to reduce their numbers using CRISPR technology," said Michael J. Wade, Distinguished Professor of Biology at IU Bloomington. "Although rare, these naturally occurring genetic variants resistant to CRISPR are enough to halt attempts at population control using genetic technology, quickly returning wild populations to their earlier, 'pre-CRISPR' numbers."

This means costly and time-consuming efforts to introduce genes that could control insect populations -- such as a trait that causes female mosquitoes to lay fewer eggs -- would disappear in a few months. This is because male mosquitoes -- used to transmit new genes since they don't bite -- only live about 10 days.

The protective effect of naturally occurring genetic variation is strong enough to overcome the use of "gene drives" based on CRISPR-based technology -- unless a gene drive is matched to the genetic background of a specific target population, Wade added. Gene drives refer to genes that spread at a rate of nearly 90 percent -- significantly higher than the normal 50 percent chance of inherence that occurs in sexually reproducing organisms.

Wade, an expert in "selfish genes" that function similarly to gene drives due to their "super-Darwinian" ability to rapidly spread throughout a population, teamed up with colleagues at IU -- including Gabriel E. Zentner, an expert in CRISPR-based genetic tools and assistant professor in the Department of Biology -- to explore the effectiveness of CRISPR-based population control in flour beetles, a species estimated to destroy 20 percent of the world's grain after harvest.

The team designed CRISPR-based interventions that targeted three segments in the genome of the flour beetle from four parts of the world: India, Spain, Peru and Indiana. They then analyzed the DNA of all four varieties of beetle and found naturally occurring variants in the targeted gene sequence, the presence of which would impact the effectiveness of the CRISPR-based technology.

The analysis revealed genetic variation in all four species at nearly every analyzed DNA segment, including a variance rate as high as 28 percent in the Peruvian beetles. Significantly, Wade's statistical analysis found that a genetic variation rate as low as 1 percent -- combined with a rate of inbreeding typical to mosquitos in the wild -- was enough to eliminate any CRISPR-based population-control methods in six generations.

The results suggest that a careful analysis of genetic variation in the target population must precede efforts to control disease-carrying insects using CRISPR technology. They also suggest that the unintended spread of modified genes across the globe is highly unlikely since typical levels of genetic variation place a natural roadblock on spread between regions or species.

"Based on this study, anyone trying to reduce insect populations through this method should conduct a thorough genetic analysis of the target gene region to assess variation rates," Wade said. "This will help predict the effectiveness of the method, as well as provide insight into ways to circumvent natural genetic variation through the use of Cas9 variants with an altered sequence specificity."
-end-
Additional authors on the paper are Douglas W. Drury, a postdoctoral researcher at IU, and Dylan J. Siniard and Amy L. Dapper, graduate students at IU at the time of the study.

This study was supported in part by the National Institutes of Health and National Science Foundation.

Indiana University

Related Mosquitoes Articles:

In Baltimore, lower income neighborhoods have bigger mosquitoes
Low-income urban neighborhoods not only have more mosquitoes, but they are larger-bodied, indicating that they could be more efficient at transmitting diseases.
Mosquitoes more likely to lay eggs in closely spaced habitats
Patches of standing water that are close together are more likely to be used by mosquitoes to lay eggs in than patches that are farther apart.
Why do mosquitoes choose us? Lindy McBride is on the case
Most of the 3,000+ mosquito species are opportunistic, but Princeton's Lindy McBride is most interested in the mosquitoes that scientists call 'disease vectors' -- carriers of diseases that plague humans -- some of which have evolved to bite humans almost exclusively.
Biting backfire: Some mosquitoes actually benefit from pesticide application
The common perception that pesticides reduce or eliminate target insect species may not always hold.
What makes mosquitoes avoid DEET? An answer in their legs
Many of us slather ourselves in DEET each summer in hopes of avoiding mosquito bites, and it generally works rather well.
How mosquitoes smell human sweat (and new ways to stop them)
Female mosquitoes are known to rely on an array of sensory information to find people to bite, picking up on carbon dioxide, body odor, heat, moisture, and visual cues.
Forecasting mosquitoes' global spread
New prediction models factoring in climate, urbanization and human travel and migration offer insight into the recent spread of two key disease-spreading mosquitoes -- Aedes aegypti and Aedes albopictus.
Medicating mosquitoes to fight malaria
Mosquitoes that landed on surfaces coated with the anti-malarial compound atovaquone were completely blocked from developing Plasmodium falciparum, the parasite that causes malaria, according to new research led by Harvard T.H.
Mosquitoes can hear from longer distances than previously thought
While most hearing experts would say an eardrum is required for long distance hearing, a new study from Binghamton University and Cornell University has found that Aedes aegypti mosquitos can use their antennae to detect sounds that are at least 10 meters away.
Urbanization changes shape of mosquitoes' wings
Research shows that rapid urbanization in São Paulo City, Brazil, is influencing wing morphology in the mosquitoes that transmit dengue and malaria.
More Mosquitoes News and Mosquitoes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.