Driverless cars working together can speed up traffic by 35%

May 19, 2019

A fleet of driverless cars working together to keep traffic moving smoothly can improve overall traffic flow by at least 35 percent, researchers have shown.

The researchers, from the University of Cambridge, programmed a small fleet of miniature robotic cars to drive on a multi-lane track and observed how the traffic flow changed when one of the cars stopped.

When the cars were not driving cooperatively, any cars behind the stopped car had to stop or slow down and wait for a gap in the traffic, as would typically happen on a real road. A queue quickly formed behind the stopped car and overall traffic flow was slowed.

However, when the cars were communicating with each other and driving cooperatively, as soon as one car stopped in the inner lane, it sent a signal to all the other cars. Cars in the outer lane that were in immediate proximity of the stopped car slowed down slightly so that cars in the inner lane were able to quickly pass the stopped car without having to stop or slow down significantly.

Additionally, when a human-controlled driver was put on the 'road' with the autonomous cars and moved around the track in an aggressive manner, the other cars were able to give way to avoid the aggressive driver, improving safety.

The results, to be presented today at the International Conference on Robotics and Automation (ICRA) in Montréal, will be useful for studying how autonomous cars can communicate with each other, and with cars controlled by human drivers, on real roads in the future.

"Autonomous cars could fix a lot of different problems associated with driving in cities, but there needs to be a way for them to work together," said co-author Michael He, an undergraduate student at St John's College, who designed the algorithms for the experiment.

"If different automotive manufacturers are all developing their own autonomous cars with their own software, those cars all need to communicate with each other effectively," said co-author Nicholas Hyldmar, an undergraduate student at Downing College, who designed much of the hardware for the experiment.

The two students completed the work as part of an undergraduate research project in summer 2018, in the lab of Dr Amanda Prorok from Cambridge's Department of Computer Science and Technology.

Many existing tests for multiple autonomous driverless cars are done digitally, or with scale models that are either too large or too expensive to carry out indoor experiments with fleets of cars.

Starting with inexpensive scale models of commercially-available vehicles with realistic steering systems, the Cambridge researchers adapted the cars with motion capture sensors and a Raspberry Pi, so that the cars could communicate via wifi.

They then adapted a lane-changing algorithm for autonomous cars to work with a fleet of cars. The original algorithm decides when a car should change lanes, based on whether it is safe to do so and whether changing lanes would help the car move through traffic more quickly. The adapted algorithm allows for cars to be packed more closely when changing lanes and adds a safety constraint to prevent crashes when speeds are low. A second algorithm allowed the cars to detect a projected car in front of it and make space.

They then tested the fleet in 'egocentric' and 'cooperative' driving modes, using both normal and aggressive driving behaviours, and observed how the fleet reacted to a stopped car. In the normal mode, cooperative driving improved traffic flow by 35% over egocentric driving, while for aggressive driving, the improvement was 45%. The researchers then tested how the fleet reacted to a single car controlled by a human via a joystick.

"Our design allows for a wide range of practical, low-cost experiments to be carried out on autonomous cars," said Prorok. "For autonomous cars to be safely used on real roads, we need to know how they will interact with each other to improve safety and traffic flow."

In future work, the researchers plan to use the fleet to test multi-car systems in more complex scenarios including roads with more lanes, intersections and a wider range of vehicle types.
-end-


University of Cambridge

Related Driving Articles from Brightsurf:

Driving behavior less 'robotic' thanks to new Delft model
Researchers from TU Delft have now developed a new model that describes driving behaviour on the basis of one underlying 'human' principle: managing the risk below a threshold level.

Warming temperatures are driving arctic greening
As Arctic summers warm, Earth's northern landscapes are changing. Using satellite images to track global tundra ecosystems over decades, a new study found the region has become greener, as warmer air and soil temperatures lead to increased plant growth.

Software of autonomous driving systems
Researchers at TU Graz and AVL focus on software systems of autonomous driving systems.

Driving immunometabolism to control lung infection
When drugs to kill microbes are ineffective, host-directed therapy uses the body's own immune system to deal with the infection.

Representation of driving behavior as a statistical model
A joint research team from Toyohashi University of Technology has established a method to represent driving behaviors and their changes that differ among drivers in a single statistical model, taking into account the effect of various external factors such as road structure.

Improving the vision of self-driving vehicles
There may be a better way for autonomous vehicles to learn how to drive themselves: by watching humans.

Impaired driving -- even once the high wears off
McLean researchers have discovered that recreational marijuana use affects driving ability even when users are not intoxicated.

Self-driving microrobots
Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms.

AI to determine when to intervene with your driving
Can your AI agent judge when to talk to you while you are driving?

Cooperating may result in better self-driving experience
To better understand and predict the outcomes of the steering wheel control dilemma, contrary to many previous studies, in a paper published in IEEE/CAA Journal of Automatica Sinica, Dr.

Read More: Driving News and Driving Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.