Pretty as a peacock: The gemstone for the next generation of smart sensors

May 19, 2020

Scientists have taken inspiration from the biomimicry of butterfly wings and peacock feathers to develop an innovative opal-like material that could be the cornerstone of next generation smart sensors.

An international team of scientists, led by the Universities of Surrey and Sussex, has developed colour-changing, flexible photonic crystals that could be used to develop sensors that warn when an earthquake might strike next.

The wearable, robust and low-cost sensors can respond sensitively to light, temperature, strain or other physical and chemical stimuli making them an extremely promising option for cost-effective smart visual sensing applications in a range of sectors including healthcare and food safety.

In a study published by the journal Advanced Functional Materials, researchers outline a method to produce photonic crystals containing a minuscule amount of graphene resulting in a wide range of desirable qualities with outputs directly observable by the naked eye.

Intensely green under natural light, the extremely versatile sensors change colour to blue when stretched or turn transparent after being heated.

Dr. Izabela Jurewicz, Lecturer in Soft Matter Physics at the University of Surrey's Faculty of Engineering and Physical Sciences, said "This work provides the first experimental demonstration of mechanically robust yet soft, free-standing and flexible, polymer-based opals containing solution-exfoliated pristine graphene. While these crystals are beautiful to look at, we're also very excited about the huge impact they could make to people's lives."

Alan Dalton, Professor Of Experimental Physics at the University of Sussex's School of Mathematical and Physical Sciences, said: ""Our research here has taken inspiration from the amazing biomimicry abilities in butterfly wings, peacock feathers and beetle shells where the colour comes from structure and not from pigments. Whereas nature has developed these materials over millions of years we are slowly catching up in a much shorter period."

Among their many potential applications are: The research draws on the Materials Physics Group's (University of Sussex) expertise in the liquid processing of two-dimensional nanomaterials, Soft Matter Group's (University of Surrey) experience in polymer colloids and combines it with expertise at the Advanced Technology Institute in optical modelling of complex materials. Both universities are working with the Sussex-based company Advanced Materials Development (AMD) Ltd to commercialise the technology.

Joseph Keddie, Professor of Soft Matter Physics at the University of Surrey, said: "Polymer particles are used to manufacture everyday objects such as inks and paints. In this research, we were able finely distribute graphene at distances comparable to the wavelengths of visible light and showed how adding tiny amounts of the two-dimensional wonder-material leads to emerging new capabilities."

John Lee, CEO of Advanced Materials Development (AMD) Ltd, said: "Given the versatility of these crystals, this method represents a simple, inexpensive and scalable approach to produce multi-functional graphene infused synthetic opals and opens up exciting applications for novel nanomaterial-based photonics. We are very excited to be able to bring it to market in near future."
-end-


University of Surrey

Related Butterfly Wings Articles from Brightsurf:

Quieter wind beneath the wings
The ability to efficiently simulate the noise generated by wings and propellers promises to accelerate the development of quieter aircraft and turbines.

Insect wings inspire new ways to fight superbugs
The wings of cicadas and dragonflies are natural bacteria killers, inspiring scientists who are searching for new ways to defeat drug-resistant superbugs.

Butterfly wings inspiring next-gen technological innovations
The global energy shortages, environmental degradation and deteriorating healthcare are causing devastating effects to human life.

Armor on butterfly wings protects against heavy rain
An analysis of high-speed raindrops hitting biological surfaces such as feathers, plant leaves and insect wings reveals how these highly water-repelling veneers reduce the water's impact.

Analysis of bird species reveals how wings adapted to their environment and behavior
Bird wings adapted for long-distance flight are linked to their environment and behavior, according to new research on an extensive database of wing measurements, led by the University of Bristol.

The butterfly effect: Climate change could cause decline of some alpine butterfly species
The long-term effects of climate change suggests that the butterfly effect is at work on butterflies in the alpine regions of North America, according to a new study by University of Alberta scientists -- and the predictions don't bode well.

Study reveals unique physical, chemical properties of cicada wings
Biological structures sometimes have unique features that engineers would like to copy.

The evolution of color: Team shows how butterfly wings can shift in hue
A selective mating experiment by a curious butterfly breeder has led scientists to a deeper understanding of how butterfly wing color is created and evolves.

Insect wings hold antimicrobial clues for improved medical implants
Some insect wings such as cicada and dragonfly possess nanopillar structures that kill bacteria upon contact.

Climate change may be making migration harder by shortening nightingales' wings
The Common Nightingale, known for its beautiful song, breeds in Europe and parts of Asia and migrates to sub-Saharan Africa every winter.

Read More: Butterfly Wings News and Butterfly Wings Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.