Nav: Home

How some insects manage to halt their own growth in harsh conditions

May 19, 2020

The life cycle of insects consists of specific developmental stages. But, in response to adverse conditions, such as harsh winters, some insects arrest their own development at a particular stage. This process of seasonal adaptation is called "overwintering," in which the growth rate of the insect is either reduced or halted. This mechanism helps the insect to cope with extreme conditions that are unsuitable for its growth and reproduction. Overwintering usually occurs at a species-specific developmental stage. For example, some insects, such as silk moths, butterflies, and fresh flies, go through diapauses in the "embryo" or "pupal" stage (developmental stages in which the insect is still immature). In such insects, this process has been extensively studied. But, in some insects that go through this arrest at the "nymphal" stage (another type of stage in which the insect is still immature), the exact details of this process have been unclear until now.

In a study published in PNAS, a research group, led by at Dr Kenji Tomioka of Okayama University, dug deeper into how developmental arrest occurs at the nymphal stage. They studied this process in a species of cricket, called Modicogryllus siamensis, in which the growth arrest phase occurs once a year in the nymphal stage. The scientists also knew that in this stage, the insect shows "photoperiodic" responses (meaning that it responds to the length of days). Dr Tomioka explains, "Although photoperiod and temperature are known to regulate this change, the underlying mechanism remains unknown. The cricket Modicogryllus siamensis 'overwinters' as nymphs, with a reduced growth rate and increased molts."

A nymph develops into its adult form approximately 60 days after it hatches from the egg under long-day conditions. During its developmental process, it undergoes about 8 molts (a process in which the insect sheds its exoskeleton). Under short-day conditions, the nymphal period is longer with an increased number of molts, which helps in the overwintering process. Exactly how this happens was the question. To begin with, the scientists wanted to see how the nymphal period of slow growth is regulated by temperature. They found that low temperatures led to the reduced expression of two genes, insulin-like peptide (Ms'Ilp) and Target of rapamycin (Ms'Tor), which are part of the pathway that promotes the growth cycle in insects (the "insulin/TOR signaling" pathway). Interestingly, the scientists found that a suppression of these genes leads to a slowdown of growth in the insect, without even affecting the number of molts.

Next, the scientists focused on how day length regulates the growth arrest in insects. They uncovered that an intracellular pathway, called "the juvenile hormone (JH) pathway," controls how day length affects the growth and molting numbers of the insect. Based on these findings, the researchers conclude that the JH signaling pathway and the temperature-controlled insulin/TOR pathway work in tandem to regulate nymphal development to achieve seasonal adaptation in this cricket.

These findings not only deepen our understanding on the mechanism of seasonal adaptation in certain insects but also shed light on the insect's evolutionary strategy to survive in temperate areas, where day length and temperature change seasonally. Dr Tomioka concludes, "Our study was the first to show that nymphal development in an insect was controlled by two distinct mechanisms. Although much remains to be known regarding these mechanisms, we aim to gain this insight through further research."

Okayama University

Related Insects Articles:

Dramatic loss of food plants for insects
Just a few weeks ago, everyone was talking about plummeting insect numbers.
The brains of shrimps and insects are more alike than we thought
Crustaceans share a brain structure known to be crucial for learning and memory in insects, a University of Arizona-led research team discovered.
Freshwater insects recover while spiders decline in UK
Many insects, mosses and lichens in the UK are bucking the trend of biodiversity loss, according to a comprehensive analysis of over 5,000 species led by UCL and the UK Centre for Ecology & Hydrology (UKCEH), and published in Nature Ecology & Evolution.
Hundreds of novel viruses discovered in insects
New viruses which cause diseases often come from animals. Well-known examples of this are the Zika virus transmitted by mosquitoes, bird flu viruses, as well as the MERS virus which is associated with camels.
Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.
Helpful insects and landscape changes
We might not notice them, but the crops farmers grow are protected by scores of tiny invertebrate bodyguards.
New information on tropical parasitoid insects revealed
The diversity and ecology of African parasitoid wasps was studied for over a year during a project run by the Biodiversity Unit of the University of Turku in Finland.
Insects need empathy
In February, environmentalists in Germany collected 1.75 million signatures for a 'save the bees law.' Citizens can stop insect declines by halting habitat loss and fragmentation, producing food without pesticides and limiting climate change, say the authors of this Perspectives piece in Science.
Migratory hoverflies 'key' as many insects decline
Migratory hoverflies are 'key' to pollination and controlling crop pests amid the decline of many other insect species, new research shows.
We now know how insects and bacteria control ice
in a paper published today in the Journal of the American Chemical Society University of Utah professor Valeria Molinero and her colleagues show how key proteins produced in bacteria and insects can either promote or inhibit the formation of ice, based on their length and their ability to team up to form large ice-binding surfaces.
More Insects News and Insects Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.