New biomarker could flag tumors that are sensitive to common diabetes drug

May 19, 2020

GRAND RAPIDS, Mich. (May 19, 2020) -- A newly identified biomarker could help scientists pinpoint which cancers are vulnerable to treatment with biguanides, a common class of medications used to control blood sugar in Type 2 diabetes.

Biguanides, particularly a medication called metformin, have long been of interest to cancer researchers because of their ability to target cellular metabolism, which fuels the growth and spread of malignant cells. To date, the success of biguanides as potential cancer therapeutics has been mixed, largely due to the difficulty in getting enough of the agent into cancer cells to be effective and the lack of a way to determine which cancers will respond to treatment.

"Cancers vary widely in how they react to different therapies -- what works for one cancer type may not work for another -- but regardless, they are all reliant on metabolism for energy production," said Van Andel Institute Professor Russell Jones, Ph.D., the study's senior author and leader of VAI's Metabolic and Nutritional Programming group. "Our results establish two important things: First, they give us a way to objectively determine which types of cancer are sensitive to biguanide treatment and, second, they illuminate how and why some patients may respond better to biguanides than other patients."

Published today in Cell Reports Medicine, the findings identify a microRNA regulated by the gene MYC as a biomarker for cancers that are sensitized to biguanide treatment. MYC is a well-known cancer-related gene whose activity is increased in as many as 70% of lymphomas. MYC works in part by turning down the activity of other genes that suppress tumor growth while heightening metabolic activity in cancer cells, a combination that allows the cells to flourish.

But there's a trade-off. While MYC helps fuel cancer cells' voracious appetites, it also turns off cells' ability to respond to a stressful biological environment, limiting flexibility in their metabolism. Treatment with biguanides cut off this energy supply, causing stress that the cells cannot cope with and leading them to die. In Type 2 diabetes, biguanides are used to lower blood sugar, but in certain cancer cells, such as lymphomas with high MYC expression, the increased stress kills the cancer cells.

"Biguanides have great potential as cancer treatments, particularly for blood cancers," Jones said. "Biomarkers such as what we have found here are vital tools for determining which cancers will respond to biguanides and which will not, which is important for patient care as well as designing more effective clinical trials."

As part of the study, Jones and his colleagues also characterized an experimental biguanide called IM156, which is more potent than existing biguanides. IM156 was developed by ImmunoMet Therapeutics, a clinical-stage biotechnology company that develops anti-tumor and anti-fibrotic therapies. ImmunoMet recently completed a Phase 1 safety study and IM156 was well tolerated. Jones serves as a member of ImmunoMet's Board of Scientific Advisors.
-end-
In addition to Jones, authors include Said Izreig, Alexandra Gariepy, Ariel O. Donayo, Gaëlle Bridon, Daina Avizonis, Ph.D., and Thomas F. Duchaine, Ph.D., of Goodman Cancer Research Centre, McGill University; Irem Kaymak, Ph.D., Lisa M. DeCamp, Susan M. Kitchen-Goosen, Ryan D. Sheldon, Ph.D., and Kelsey S. Williams, Ph.D., of Van Andel Institute; Hannah R. Bridges, Ph.D., of University of Cambridge; Rob Laister, Ph.D., and Mark D. Minden, Ph.D., M.D., FRCPC, of Princess Margaret Cancer Centre, University of Toronto; Nathalie A. Johnson, Ph.D., and Michael N. Pollak, M.D., of Lady Davis Institute, McGill University; and Marc S. Rudoltz, M.D., and Sanghee Yoo, Ph.D., of ImmunoMet Therapeutics. The Goodman Cancer Research Centre Metabolomics Core Facility and the Metabolomics and Bioenergetics Core at Van Andel Institute contributed to this work.

Research reported in this publication was supported by the Canadian Institutes of Health Research under grants MOP-142259 (Jones) and MOP-123352 (Duchaine); The Medical Research Council under grant MC_UU_0015/2 (Dr. Judy Hirst, supervisor for Dr. Hannah Bridges); and funding from ImmunoMet Therapeutics. The Goodman Cancer Research Center Metabolomics Core Facility is supported by grants from the Canadian Foundation for Innovation, Canadian Institutes of Health Research and Terry Fox Research Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the granting organizations.

Van Andel Research Institute

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.