MUSC researchers link gene mutation to autism behaviors

May 19, 2020

A collaboration between scientists at the Medical University of South Carolina and clinicians at the Greenwood Genetic Center has yielded new findings about how a particular gene might regulate brain development.

A paper published in Biological Psychiatry showcases how the researchers connected problems in mice with a defective copy of the MEF2C gene to issues suffered in real life by patients seen at the Greenwood Genetic Center who also have a defective copy of that gene.

Those patients have a rare form of autism called MEF2C haploinsufficiency syndrome. Basically, one of their two MEF2C genes in each cell is nonfunctioning, and the one non-mutated copy of the gene isn't powerful enough to regulate brain development the way it should, said Christopher Cowan, Ph.D., chairman of the Department of Neuroscience, whose lab conducted the study. The result in humans includes an inability to use language to communicate, epilepsy, repetitive movements, low muscle tone and breathing problems.

Cowan said the results of the study raise new prospects for treatment.

"We know the problem. The individuals have half as much MEF2C as they need. So, from a therapy standpoint, I think it opens a lot of interesting doors. We can think about ways to introduce more MEF2C into the brain during critical periods of development," he said.

It's not yet clear when interventions could be effective or if there is a developmental point of no return, he said. However, he noted that most children with this syndrome experience seizures by 20 months old, which could be a trigger for genetic testing and then potential treatment.

Cowan has been studying MEF2C for more than a decade. He'd previously found the MEF2 family is involved in synaptic pruning, the process by which the brain becomes more efficient as it prunes away redundant or irrelevant synaptic connections; this process occurs through young adulthood but is most active in the preschool and elementary school years. He'd also observed a connection to fragile X syndrome, the most common inherited form of autism.

When Cowan moved to South Carolina in 2016, he gave a talk at the Greenwood Genetic Center about his latest research findings, including information about MEF2C. More recently, the paper's joint lead authors, Adam Harrington, a postdoctoral scholar, and Catherine Bridges, an MUSC medical scientist training program student, both made presentations at a South Carolina Autism and Neurodevelopmental Disorders Consortium conference about their work on MEF2C in mice.

There to hear the talks was Steve Skinner, M.D., director of the Greenwood Genetic Center. As he listened, Skinner realized he'd just seen a patient with this gene dysfunction. Cowan and his team were excited about the opportunity to connect and interested in meeting human patients, Skinner said.

From there, the collaboration blossomed.

Cowan said that when they first created a mouse model of MEF2C haploinsufficiency syndrome, they looked to the scientific literature to see what gene mutations had already been found. They realized that nearly all the mutations were in the DNA binding region, affecting the most highly conserved portion of the protein MEF2C. Highly conserved protein regions have barely changed through millions of years of evolution - they remain nearly identical whether in yeast, flies or humans, strongly suggesting they serve a very important function.

And this particular protein is a transcription factor, which sits in the nucleus of the cell, binds to DNA and turns on hundreds of other genes, Cowan said. Those other genes must be activated at just the right time for neurons to mature, form appropriate connections and change in response to experiences, he said. That the mutations were occurring in this "hub" gene hinted that the mutations were causing problems for the protein to bind to DNA.

Indeed, the mouse model that was given one good copy and one inactive copy of MEF2C showed social deficits, hyperactivity, repetitive behavior and a significant reduction in ultrasonic vocalizations, Cowan said.

"We don't know for sure what mouse ultrasonic vocalization means to another mouse, but they generate them in social contexts," Cowan said. Researchers consider vocalizations a "species-appropriate communication mode," and this communication problem in mice mirrors the communication problems of the children in the study, he said.

When the team analyzed the genes in the mouse brains that were abnormally expressed and compared them to the human genome, two areas pinged. The first was excitatory neurons, and the second was the microglia, what Cowan calls "the brain's resident immune cell." Microglia eat up dead cells after an injury or a stroke and also physically remove synaptic material to help with pruning during normal brain development.

The scientists then removed MEF2C from just the neuronal cells or just the microglia, which produced different subsets of autism-like behaviors.

"For the field, I think it's important because it's starting to help us appreciate that neurodevelopmental disorders are probably a convergence of dysfunction or altered development of multiple different cell types. This has treatment implications as well because you can't just target the neuronal population. You can't just target microglia. You're probably going to have to think about the cluster of different cooperating cell types in the brain that lead to a typically functioning brain,"' Cowan said.

Research is continuing with cooperation from families across the world with children with this disorder. They're a small group, relatively speaking, but the internet and social media have given patients with rare disorders the opportunity to combine forces in looking for answers and even charting a path for research, Skinner said. For example, parents of children with Rett syndrome, another rare neurodevelopmental disorder, noted that their children often suffered from gallbladder diseases at a young age. Nowhere was this described in the scientific literature, but the parents saw the common thread among their children. As they began pressing for confirmation, Skinner said, researchers began looking at the question and found the connection the parents had intuited.

"Parents want to drive research to eventually find a treatment for their children," Skinner said.

The parents of children with MEF2C haploinsufficiency syndrome deeply appreciate the opportunity to talk to a researcher like Cowan, he said. The online support and information group, which consists of a few hundred families from across the world, is participating in further research, too. The research team recruited a Clemson University graduate student who developed a questionnaire that she sent to these families. It covers topics like when symptoms appeared, which symptoms appeared and treatments they have tried.

Skinner said the cooperative effort with MUSC has been rewarding.

"It's been a very collegial and collaborative relationship," he said. "Dr. Cowan has been very receptive to fielding questions from us, from the patients and families."

Cowan, for his part, said the relationship has been helpful in providing real-world context for his lab's work.

"Right in our own backyard, here in South Carolina, there are the tools and the research capabilities to be able to attack these really complex problems in biology. It's been a really great collaboration," he said.
-end-
About MUSC

Founded in 1824 in Charleston, MUSC is the oldest medical school in the South, as well as the state's only integrated, academic health sciences center with a unique charge to serve the state through education, research and patient care. Each year, MUSC educates and trains more than 3,000 students and 700 residents in six colleges: Dental Medicine, Graduate Studies, Health Professions, Medicine, Nursing and Pharmacy. The state's leader in obtaining biomedical research funds, in fiscal year 2018, MUSC set a new high, bringing in more than $276.5 million. For information on academic programs, visit http://musc.edu.As the clinical health system of the Medical University of South Carolina, MUSC Health is dedicated to delivering the highest quality patient care available, while training generations of competent, compassionate health care providers to serve the people of South Carolina and beyond. Comprising some 1,600 beds, more than 100 outreach sites, the MUSC College of Medicine, the physicians' practice plan, and nearly 275 telehealth locations, MUSC Health owns and operates eight hospitals situated in Charleston, Chester, Florence, Lancaster and Marion counties. In 2018, for the fourth consecutive year, U.S. News & World Report named MUSC Health the number one hospital in South Carolina. To learn more about clinical patient services, visit http://muschealth.org. MUSC and its affiliates have collective annual budgets of $3 billion. The more than 17,000 MUSC team members include world-class faculty, physicians, specialty providers and scientists who deliver groundbreaking education, research, technology and patient care.

About the SCTR Institute

The South Carolina Clinical and Translational Research (SCTR) Institute is the catalyst for changing the culture of biomedical research, facilitating sharing of resources and expertise and streamlining research-related processes to bring about large-scale change in the clinical and translational research efforts in South Carolina. Our vision is to improve health outcomes and quality of life for the population through discoveries translated into evidence-based practice. To learn more, visit https://research.musc.edu/resources/sctr

Medical University of South Carolina

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.