Nav: Home

Scientists use light to accelerate supercurrents, access forbidden light, quantum world

May 19, 2020

AMES, Iowa - Scientists are using light waves to accelerate supercurrents and access the unique properties of the quantum world, including forbidden light emissions that one day could be applied to high-speed, quantum computers, communications and other technologies.

The scientists have seen unexpected things in supercurrents - electricity that moves through materials without resistance, usually at super cold temperatures - that break symmetry and are supposed to be forbidden by the conventional laws of physics, said Jigang Wang, a professor of physics and astronomy at Iowa State University, a senior scientist at the U.S. Department of Energy's Ames Laboratory and the leader of the project.

Wang's lab has pioneered use of light pulses at terahertz frequencies- trillions of pulses per second - to accelerate electron pairs, known as Cooper pairs, within supercurrents. In this case, the researchers tracked light emitted by the accelerated electrons pairs. What they found were "second harmonic light emissions," or light at twice the frequency of the incoming light used to accelerate electrons.

That, Wang said, is analogous to color shifting from the red spectrum to the deep blue.

"These second harmonic terahertz emissions are supposed to be forbidden in superconductors," he said. "This is against the conventional wisdom."

Wang and his collaborators - including Ilias Perakis, professor and chair of physics at the University of Alabama at Birmingham and Chang-beom Eom, the Raymond R. Holton Chair for Engineering and Theodore H. Geballe Professor at the University of Wisconsin-Madison - report their discovery in a research paper just published online by the scientific journal Physical Review Letters. (See sidebar for a list of the other co-authors.)

"The forbidden light gives us access to an exotic class of quantum phenomena - that's the energy and particles at the small scale of atoms - called forbidden Anderson pseudo-spin precessions," Perakis said.

(The phenomena are named after the late Philip W. Anderson, co-winner of the 1977 Nobel Prize in Physics who conducted theoretical studies of electron movements within disordered materials such as glass that lack a regular structure.)

Wang's recent studies have been made possible by a tool called quantum terahertz spectroscopy that can visualize and steer electrons. It uses terahertz laser flashes as a control knob to accelerate supercurrents and access new and potentially useful quantum states of matter. The National Science Foundation has supported development of the instrument as well as the current study of forbidden light.

The scientists say access to this and other quantum phenomena could help drive major innovations:
  • "Just like today's gigahertz transistors and 5G wireless routers replaced megahertz vacuum tubes or thermionic valves over half a century ago, scientists are searching for a leap forward in design principles and novel devices in order to achieve quantum computing and communication capabilities," said Perakis, with Alabama at Birmingham. "Finding ways to control, access and manipulate the special characteristics of the quantum world and connect them to real-world problems is a major scientific push these days. The National Science Foundation has included quantum studies in its '10 Big Ideas' for future research and development critical to our nation."
  • Wang said, "The determination and understanding of symmetry breaking in superconducting states is a new frontier in both fundamental quantum matter discovery and practical quantum information science. Second harmonic generation is a fundamental symmetry probe. This will be useful in the development of future quantum computing strategies and electronics with high speeds and low energy consumption."
Before they can get there, though, researchers need to do more exploring of the quantum world. And this forbidden second harmonic light emission in superconductors, Wang said, represents "a fundamental discovery of quantum matter."
-end-
Read the paper

"Terahertz Second-Harmonic Generation from Lightwave Acceleration of Symmetry-Breaking Nonlinear Supercurrents," Physical Review Letters, Volume 124, Issue 20.

The research team

In addition to Wang, Perakis and Eom, the research team includes Iowa State's Chirag Vaswani, Dinusha Herath Mudiyanselage, Xu Yang, Di Cheng, Chuankun Huang, Richard H. Kim, Zhaoyu Liu and Liang Luo; Alabama at Birmingham's Martin Mootz; and Wisconsin-Madison's Christopher Sundahl and Jong-Hoon Kang.

The terahertz spectroscopy study was performed at Iowa State. Model building and analysis were performed at the University of Alabama at Birmingham. Sample development and structural/transport measurements were performed at the University of Wisconsin-Madison.

Iowa State University

Related Physics Articles:

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.
Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.
Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.
Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.
Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.
Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
More Physics News and Physics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Biology Of Sex
Original broadcast date: May 8, 2020. Many of us were taught biological sex is a question of female or male, XX or XY ... but it's far more complicated. This hour, TED speakers explore what determines our sex. Guests on the show include artist Emily Quinn, journalist Molly Webster, neuroscientist Lisa Mosconi, and structural biologist Karissa Sanbonmatsu.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

The Wubi Effect
When we think of China today, we think of a technological superpower. From Huweai and 5G to TikTok and viral social media, China is stride for stride with the United States in the world of computing. However, China's technological renaissance almost didn't happen. And for one very basic reason: The Chinese language, with its 70,000 plus characters, couldn't fit on a keyboard.  Today, we tell the story of Professor Wang Yongmin, a hard headed computer programmer who solved this puzzle and laid the foundation for the China we know today. This episode was reported and produced by Simon Adler with reporting assistance from Yang Yang. Special thanks to Martin Howard. You can view his renowned collection of typewriters at: antiquetypewriters.com Support Radiolab today at Radiolab.org/donate.