COVID-19 tests compared

May 19, 2020

COLD SPRING HARBOR, NEW YORK -- In an important, comprehensive, and timely review, an expert team from the University of California Berkeley details the methodologies used in nucleic acid-based tests for detecting the presence of SARS-CoV-2, the virus that causes COVID-19. They show that these tests vary widely in applicability to mass screening and urge further improvements in testing technologies to increase speed and availability.

Testing for the presence of the SARS-CoV-2 virus has been extensively discussed during the COVID-19 pandemic. The most sensitive tests measure the presence of the virus' genetic material, RNA, in a patient's sample, suggesting an ongoing infection. A huge effort is needed to scale up COVID-19 testing to a level required to ensure public safety. Many tests take several hours to complete and require extensive human labor as well as materials and equipment that are not universally available. There is a pressing need for alternatives, and the research community worldwide has provided a large number of them in journal articles and preprints (papers that have not yet been peer reviewed). The Berkeley scientists have assessed these approaches and show that some tests take minutes, some take hours, many are done in different ways, and they vary in cost and potential for mass use. The authors are "hopeful that the explosion of creative and multifaceted approaches to COVID-19 nucleic-acid testing will continue to seed solutions as society addresses the COVID-19 pandemic."
-end-
About the article: Published May 1, 2020, doi: 10.1261/rna.076232.120 RNA 2020. Published by Cold Spring Harbor Laboratory Press for the RNA Society

About RNA: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry. RNA considers papers in six categories: Reports, Articles, Bioinformatics, Hypotheses, Methods, and Letters to the Editor. In addition to the categories above, RNA publishes Reviews, Perspectives, Commentaries, and Mini-reviews. This journal is published by CSHL Press for RNA Society.

About Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. Since 1933, it has furthered the advance and spread of scientific knowledge in all areas of genetics and molecular biology, including cancer biology, plant science, bioinformatics, and neurobiology. The Press is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit our website at cshlpress.org.

Cold Spring Harbor Laboratory Press

Related Virus Articles from Brightsurf:

Researchers develop virus live stream to study virus infection
Researchers from the Hubrecht Institute and Utrecht University developed an advanced technique that makes it possible to monitor a virus infection live.

Will the COVID-19 virus become endemic?
A new article in the journal Science by Columbia Mailman School researchers Jeffrey Shaman and Marta Galanti explores the potential for the COVID-19 virus to become endemic, a regular feature producing recurring outbreaks in humans.

Smart virus
HSE University researchers have found microRNA molecules that are potentially capable of repressing the replication of human coronaviruses, including SARS-CoV-2.

COVID-19 - The virus and the vasculature
In severe cases of COVID-19, the infection can lead to obstruction of the blood vessels in the lung, heart and kidneys.

Lab-made virus mimics COVID-19 virus
Researchers at Washington University School of Medicine in St. Louis have created a virus in the lab that infects cells and interacts with antibodies just like the COVID-19 virus, but lacks the ability to cause severe disease.

Virus prevalence associated with habitat
Levels of virus infection in lobsters seem to be related to habitat and other species, new studies of Caribbean marine protected areas have shown.

Herpes virus decoded
The genome of the herpes simplex virus 1 was decoded using new methods.

A new biosensor for the COVID-19 virus
A team of researchers from Empa, ETH Zurich and Zurich University Hospital has succeeded in developing a novel sensor for detecting the new coronavirus.

How at risk are you of getting a virus on an airplane?
New 'CALM' model on passenger movement developed using Frontera supercomputer.

Virus multiplication in 3D
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies.

Read More: Virus News and Virus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.