Determining the quantity and location of lipids in the brain

May 19, 2020

Researchers at the Beckman Institute at the University of Illinois at Urbana-Champaign have developed a new technique that can determine the specific molecular form, location, and the amount of lipids in samples of rat brain tissue. The technique provides more information than previous methods.

The paper "Quantitative Imprint Mass Spectrometry Imaging of Endogenous Ceramides in Rat Brain Tissue with Kinetic Calibration" was published in Analytical Chemistry.

"The brain is like a bar of butter. The most common molecules are water and lipids," said Jonathan Sweedler, James R. Eiszner Family Endowed Chair in Chemistry and the director of the School of Chemical Sciences. "Unfortunately, we don't fully understand the chemical complexity of lipids in the brain, which makes it hard to know their functions and how they are affected by different diseases."

Previous research in the field determined the lipid composition in a brain region, but not the localization or amount. The Sweedler Research Group refined a new technique called mass spectroscopy imaging that measures all three. "The technique allows us to look at a slice of a rat brain and figure out the locations of specific and unusual lipids," Sweedler said.

Members of the Sweedler Research Group imprinted the tissues onto slides containing chemicals that could diffuse into the tissues and vice versa. "It's like taking a piece of paper with ink and putting silly putty on it and seeing the image on the silly putty," Sweedler said. Using this technique, the researchers were able to determine the distribution and amount of ceramides, which are important in learning and memory, in the tissue samples.

However, there are disadvantages to the technique. "Although it works well for certain categories of lipids, we haven't shown that it works for the molecules found in the brain," Sweedler said. "Additionally, it requires more steps because you have to prepare the brain sample and the surfaces that have the chemical coating."

The researchers hope that this technique will help them look at how the lipid composition changes in response to pain medicines and drugs of abuse. This may help in the search for alternatives to existing treatments for chronic pain.
The study was funded by the National Institute on Drug Abuse.

Editor's Note:

The paper "Quantitative Imprint Mass Spectrometry Imaging of Endogenous Ceramides in Rat Brain Tissue with Kinetic Calibration" can be found at

Beckman Institute for Advanced Science and Technology

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to