Unique population of muscle stem cells found in mice

May 20, 2002

PITTSBURGH, May 21 - Transplanting a unique population of muscle stem cells from healthy newborn mice delivers dystrophin, a key protein for muscle function, into mice born with a genetic muscle-wasting disease similar to Duchenne muscular dystrophy, Johnny Huard, Ph.D., and his colleagues report in the May 27 issue of the Journal of Cell Biology. The text is available online now at http://www.jcb.org.

"Studying the behavior of these cells after transplant, we found some very exciting things," said Dr. Huard, who is an associate professor of orthopaedic surgery, molecular genetics, biochemistry and bioengineering at the University of Pittsburgh School of Medicine and director of the Growth and Development Laboratory at Children's Hospital of Pittsburgh. "Not only did the donor cells continue to grow and make dystrophin in the recipient, but they also apparently failed to provoke an immune response, which would protect them from rejection."

Dr. Huard, Zhuqing Qu-Peterson, Ph.D., and other colleagues from the University of Pittsburgh and the University of Bonn, Germany, isolated stem cells from the muscle of healthy newborn mice that had been grown in culture.

Using a technique called pre-plating, the dividing cells were culled into differing groups and eventually winnowed to what Dr. Huard calls muscle-derived stem cells or MDSC. These cells were injected into the muscles of "mdx" mice, a rodent model for Duchenne muscular dystrophy. In humans, this disease causes muscle weakness and early death because of respiratory or cardiac failure.

Dr. Huard and his colleagues are working on the transplantation of MDS cells as a potential approach to deliver dystrophin to the muscles of mdx mice. Less refined muscle cells, called EP (early plate) cells, also were transplanted into mdx mice for comparison.

"These muscle-derived stem cells appear to be pluripotent; they can differentiate into muscle, neural and vascular lineages both in vitro and in vivo," said Dr. Huard, who also is deputy director of the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. "In addition, we were able to use a gene marker to prove that these cells were incorporated into the musculature of mdx mice. The cells continued to proliferate, make dystrophin and improve muscle regeneration."

MDS cells were "tagged" with the LacZ reporter gene and traced, Dr. Huard explained, adding that these marked cells were found in blood vessels and peripheral nerve tissue as well as in muscle tissue. Researchers also looked for evidence of immune system activity at the transplant sites and monitored cell activity for three months.

"These results suggest that the improved transplantation capacity of the MDSC may be attributed to their inability to trigger infiltration of activated lymphocytes ... which would eventually play a role in immune rejection of the transplanted cells," Dr. Huard wrote.

While these results are promising, further investigation is necessary. Scientists still have not identified a way to deliver the missing dystrophin gene systemically to achieve a global improvement in muscle function.

"We need to find out the best way to make these cells grow and become the right kinds of cells, as well as to control the process," said Dr. Huard. "But it is an important step in the development of muscle cell transplantation for Duchenne muscular dystrophy patients."

In addition to Drs. Huard and Qu-Peterson, other authors are Bridget Deasy, Ron Jankowski, Makato Ikezawa, M.D., James Cummins, Ryan Pruchnic, John Mytinger, Baohong Cao, M.D., Ph.D., and Charley Gates, all of the University of Pittsburgh; and Anton Wernig, M.D., Ph.D., of the University of Bonn, Germany.
-end-
kr/05-15-02

CONTACT:
Michele D. Baum
UPMC News Bureau
PHONE: 412-647-3555
E-MAIL: BaumMD@msx.upmc.edu

CONTACT:
Melanie Finnigan
Children's Hospital of Pittsburgh
PHONE: 412-692-5016
E-MAIL: Melanie.Finnigan@chp.edu

University of Pittsburgh Medical Center

Related Cell Biology Articles from Brightsurf:

Deep learning on cell signaling networks establishes AI for single-cell biology
Researchers at CeMM have developed knowledge-primed neural networks (KPNNs), a new method that combines the power of deep learning with the interpretability of biological network models.

RNA biology provides the key to cell identity and health
Two papers in Genome Research by the FANTOM Consortium have provided new insights into the core regulatory networks governing cell types in different vertebrate species, and the role of RNA as regulators of cell function and identity.

Cell biology: Your number's up!
mRNAs program the synthesis of proteins in cells, and their functional lifetimes are dynamically regulated.

Cell biology -- maintaining mitochondrial resilience
Mitochondria cannot autonomously cope with stress and must instead call on the cell for help.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Cell-free synthetic biology comes of age
In a review paper published in Nature Reviews Genetics, Professor Michael Jewett explores how cell-free gene expression stands to help the field of synthetic biology dramatically impact society, from the environment to medicine to education.

Scientists develop electrochemical platform for cell-free synthetic biology
Scientists at the University of Toronto (U of T) and Arizona State University (ASU) have developed the first direct gene circuit to electrode interface by combining cell-free synthetic biology with state-of-the-art nanostructured electrodes.

In a first for cell biology, scientists observe ribosome assembly in real time
A team of scientists from Scripps Research and Stanford University has recorded in real time a key step in the assembly of ribosomes -- the complex and evolutionarily ancient 'molecular machines' that make proteins in cells and are essential for all life forms.

Cell biology: Endocannabinoid system may be involved in human testis physiology
The endocannabinoid system (ECS) may be directly involved in the regulation of the physiology of the human testis, including the development of sperm cells, according to a study in tissue samples from 15 patients published in Scientific Reports.

Read More: Cell Biology News and Cell Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.