Nav: Home

Many scientists believe the dog genome holds information that will benefit human health

May 20, 2004

A new genetic analysis of man's best friend could help scientists explain why a border collie has knack for herding or why poodles sport a curly coat. In the May 21 issue of Science, researchers at Fred Hutchinson Cancer Research Center report the first extensive genetic comparison of domestic dog breeds.

The study, led by Fred Hutchinson researchers Drs. Elaine Ostrander, Leonid Krugylak and graduate student Heidi Parker, revealed distinct DNA blueprints for each of the 85 varieties of purebreds that were analyzed as well as similarities between certain breeds. The researchers expect that understanding these genetic relationships will help them uncover the genes responsible for the physical features and behaviors unique to each breed as well as the diseases to which they are commonly susceptible, such as cancer, deafness, blindness, heart disease and hip dysplasia.

The findings also have generated excitement among those who study diseases of the human animal. Because at least half of the more than 300 inherited canine disorders-including a number of cancers-resemble specific diseases of man, many scientists believe that the dog genome holds a wealth of information that will benefit human health.

Ostrander, head of the dog genome project at Fred Hutchinson, was among the first to appreciate the dog's potential as a model system for gene hunting.

"This study helps us understand the genetic relationships between breeds, a finding that will facilitate our efforts to map disease genes and genes for what are known as complex traits, which result from the interaction of multiple genes," she said. "This analysis provides us with the blueprint."

The dog is a geneticist's dream because each pure breed represents a group of genetically similar animals that have descended from only a few ancestors.

"Most breeds have been artificially created by man," said Parker. "Although all are members of the same species, this selective breeding has resulted in amazing variation between breeds with respect to weight, size, head shapes, coat, ear shape, behaviors and diseases."

The level of diversity within the species is unprecedented, Kruglyak said. "Obviously, we'd like to understand the genetic differences that are responsible for this."

Since any traits associated with a given breed must result from a shared set of genetic determinants, these genes stand out much more obviously than they would in a population of unrelated, or genetically dissimilar, animals. In addition, because most breeds were developed within the last 300 years-considered a very short period of time by evolutionary biologists-scientists expect that each distinctive trait has arisen from a small number of genes. Both of these features greatly ease scientists' ability to identify a gene or genes responsible for a specific trait.

To identify the genes for a particular characteristic or disease man, scientists often focus on human groups known to share a common ancestry. Examples include large, multigenerational families or isolated populations, such as Icelanders, whose members descend from a small group of founders. The small number of isolated human populations available for study has hampered the identification of genes for many common diseases, a problem that Ostrander and others believe could be overcome by studying the dog.

"There are more than 400 breeds of dog, and each is an isolated breeding population," Ostrander said. "What that means is that each dog breed is a like a little Iceland-an isolated population that allows us to simplify a complicated genetic problem.

"Although there may be just as many genes for a given disease in dogs as there are in humans, being able to search for them in a single breed allows us to find the one or two genes responsible for that disease in that population much more easily."

To analyze the similarities and differences among purebred dogs, Parker contacted breed clubs and traveled to dog shows to collect DNA samples from five animals from each of 85 different breeds. She then analyzed, or genotyped, the DNA using a procedure known as microsatellite analysis.

Microsatellites serve as genetic signposts, snippets of DNA whose physical positions along the chromosome are known. The DNA sequence of each microsatellite marker can vary considerably among individuals but is often shared among those who are closely related.

Parker examined 96 different microsatellites in 414 purebred dogs representing 85 breeds. She then worked with Kruglyak, an expert in the application of state-of-the-art statistical methods to large genetic studies, to evaluate the relationships among breeds.

The researchers found that the DNA sequences of microsatellites from dogs within a breed were much more similar than those among breeds. Microsatellite "signatures" for each breed were distinct enough that they could be used to categorize 99 percent of the individual dogs into their correct breeds.

"The fact that we were able to do this with so few dogs from each breed tells us that the microsatellites-and therefore, probably many of their genes-are very common among members of a breed," Parker said. That finding also means that the approach could be used to verify that a dog truly belongs to a particular breed if its ancestry is in question.

Based on the genotyping analysis, the researchers were able to sort the breeds into four groups of genetically similar varieties, which presumably share common ancestry. Some of the relationships between breeds had not previously been known.

One of the four clusters represents an ancient group of animals with Asian and African origins that possess a wide diversity of traits. This group includes breeds such as the Alaskan Malamute and Siberian Husky and shows the closest relationship to the wolf, the direct ancestor of the domestic dog.

"This group may be telling us something about the original domesticated dog population," Kruglyak said.

One of the other three other groups contains Mastiff-like breeds that share common physical characteristics. Another includes Shetland and Belgian sheepdogs, Collies and other dogs with herding behaviors. The fourth group includes animals with hunting-associated behaviors. Parker said that research groups, including Ostrander's lab, are using information from their analysis to study specific canine diseases.

"We're now looking at narrowing down similar regions of DNA to identify single genes that contribute to particular traits," she said. "There are hundreds of diseases out there, and many of them have counterparts in humans."

In addition to cancer, the Ostrander lab is studying genetics of blindness and soon will begin a study on genetics of obsessive-compulsive disease. "What is so great about this study to date is that it's been a real community effort," Ostrander said. "We could not have done the work without the involvement of pet owners, breeders and community leaders who support the work we're doing to improve both canine and human health. This is just the way science is supposed to be done."
-end-
The Fred Hutchinson Cancer Research Center, home of two Nobel Prize laureates, is an independent, nonprofit research institution dedicated to the development and advancement of biomedical research to eliminate cancer and other potentially fatal diseases. Fred Hutchinson receives more funding from the National Institutes of Health than any other independent U.S. research center. Recognized internationally for its pioneering work in bone-marrow transplantation, the center's four scientific divisions collaborate to form a unique environment for conducting basic and applied science. Fred Hutchinson, in collaboration with its clinical and research partners, the University of Washington and Children's Hospital and Regional Medical Center, is the only National Cancer Institute-designated comprehensive cancer center in the Pacific Northwest and is one of 38 nationwide. For more information, visit the center's Web site at www.fhcrc.org.

Advancing Knowledge, Saving Lives

Fred Hutchinson Cancer Research Center

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.