Nav: Home

Magnetic forces may turn some nanotubes into metals

May 20, 2004

HOUSTON, May 21, 2004 -- A new study, published in today's issue of the journal Science, finds that the basic electrical properties of semiconducting carbon nanotubes change when they are placed inside a magnetic field. The phenomenon is unique among known materials, and it could cause semiconducting nanotubes to transform into metals in even stronger magnetic fields.

Scientists found that the "band gap" of semiconducting nanotubes shrank steadily in the presence of a strong magnetic force, said lead researcher Junichiro Kono, an assistant professor of electrical and computer engineering at Rice University. The research, which involved a multidisciplinary team of electrical engineers, chemists and physicists, helps confirm quantum mechanical theories offered more than four decades ago, and it sheds new light on the unique electrical properties of carbon nanotubes, tiny cylinders of carbon that measure just one-billionth of a meter in diameter.

"We know carbon nanotubes are exceptionally strong, very light and imbued with wonderful electrical properties that make them candidates for things like 'smart' spacecraft components, 'smart' power grids, biological sensors, improved body armor and countless other applications," said paper co-author Richard Smalley, director of Rice's Carbon Nanotechnology Laboratory. "These findings remind us that there are still unique and wonderful properties that we have yet to uncover about nanotubes."

By their very nature, semiconductors can either conduct electricity, in the same way metals do, or they can be non-conducting, like plastics and other insulators. This simple transformation allows the transistors inside a computer to be either "on" or "off," two states that correspond to the binary bits -- the 1's and 0's -- of electronic computation.

Semiconducting materials like silicon and gallium arsenide are the mainstays of the computer industry, in part because they have a narrow "band gap," a low energy threshold that corresponds to how much electricity it takes to flip a transistor from "off" to "on."

"Among nanotubes with band gaps comparable to silicon and gallium arsenide, we found that the band gap shrank as we applied high magnetic fields," said physicist Sasa Zaric, whose doctoral dissertation was based upon the work. "In even stronger fields, we think the gap would disappear altogether."

Nanotubes, hollow cylinders of pure carbon that are just one atom thick, come in dozens of different varieties, each with a subtle difference in diameter or physical structure. Of these varieties roughly one third are metals and the rest are semiconductors.

In the experiments, which were performed at the National High Magnetic Field Laboratory (NHMFL) at Florida State University, Kono's group placed solutions of nanotubes inside a chamber containing very strong magnetic fields. Lasers were shined at the samples, and conclusions were drawn based upon an analysis of the light that was emitted and absorbed by the samples.

"The behavior we observed is unique among known materials, but it is consistent with theoretical predictions, and we believe we understand what's causing it," said Kono. "Our data show, for the first time, that the so-called Aharonov-Bohm phase can directly affect the band structure of a solid. The Aharonov-Bohm effect has been observed in other physical systems, but this is the first case where the effect interferes with another fundamental solid-state theorem, that is, the Bloch theorem. This arises from the fact that nanotubes are crystals with well-defined lattice periodicity. I wouldn't be surprised to see a corresponding effect in other tubular crystals like boron nitride nanotubes."

Kono said the discovery could lead to novel new experiments on one-dimensional magneto-excitons, quantum pairings that are interesting to researchers studying quantum computing, nonlinear optics and quantum optics. Kono said it's too early to predict what types of applied science might flow from the discovery.

The NHMFL experiments were conducted in fields up to 45 Tesla in strength -- the strongest continuous magnetic field in any lab in the world. Kono said he is arranging for additional tests in stronger magnetic fields. He has already met with research groups in France, Tokyo and at New Mexico's Los Alamos National Laboratory, each of which has facilities that use brief pulses of power to create short-lived magnetic fields that are exceptionally strong.
The research was supported by the Welch Foundation, the Texas Advanced Technology Program, the National Science Foundation, the NHMFL and the State of Florida. Other co-authors included NHMFL's Xing Wei, and Rice's Robert Hauge, Gordana Ostojic, Jonah Shaver, Valerie Moore and Michael Strano. Rice's team represented the Carbon Nanotechnology Laboratory, the Center for Nanoscale Science and Technology, the Center for Biological and Environmental Nanotechnology and the Rice Quantum Institute.

Rice University

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.