Nav: Home

Strong magnetic field converts nanotube from metal to semiconductor and back

May 20, 2004

CHAMPAIGN, Ill. -- By threading a magnetic field through a carbon nanotube, scientists have switched the molecule between metallic and semiconducting states, a phenomenon predicted by physicists some years ago, but never before clearly seen in individual molecules.

In the May 21 issue of the journal Science, researchers from the University of Illinois at Urbana-Champaign present experimental evidence that a nanotube's electronic structure can be altered in response to a magnetic field. The research team consisted of physics professors Alexey Bezryadin and Paul Goldbart, postdoctoral research associate Smitha Vishveshwara and graduate students Ulas Coskun and Tzu-Chieh Wei.

Carbon nanotubes are remarkable molecules built of sheets of graphite (a hexagonal lattice of carbon atoms) rolled into long cylinders. The manner in which the sheets are rolled and seamed determines whether the tubes are metallic or semiconducting.

"Unfortunately, we can't undo the seam and rejoin it when we want to change the electronic properties of the nanotube," Goldbart said. "However, we found that we can tune these materials not by restructuring the molecules themselves but by moving their energy levels with a strong magnetic field."

Unlike other single molecules, multiwall carbon nanotubes have the ideal size and shape for studying the Aharonov-Bohm effect. "The larger diameter nanotubes (about 30 nanometers) allow us to apply a magnetic field strong enough to significantly modify the energy spectrum and convert the nanotube's electronic properties," Bezryadin said.

"The Aharonov-Bohm effect goes to the heart of quantum mechanics, and is one of the most striking manifestations of the wave nature of matter," Goldbart said. "As an electron moves, the wave actually takes multiple paths, including ones that encircle the nanotube and the magnetic flux threading it. Depending upon the strength of the magnetic field, the properties of the molecule will change from metallic to semiconducting, and back again."

To probe the electronic energy spectrum and its dependence on a magnetic field, the researchers constructed a single-electron transistor by placing a multiwall carbon nanotube across a narrow trench (about 100 nanometers wide) etched in the surface of a silicon wafer. By measuring the conduction properties of their quantum dot device in various magnetic fields, the researchers were able to observe the modulation of the nanotube energy spectrum and the associated interconversion of semiconducting and metallic states.

Electrons in a nanotube can only occupy certain energy levels, and the tube's conductance depends on how many of them there are at low energies.

"A semiconductor has a gap in the energy spectrum," Bezryadin said. "Since it has no low-lying energy levels, the conductance is very small. In contrast, low-lying levels make the system metallic, as in our nanotube when no magnetic field is present. Passing a magnetic field through the nanotube changes the energies of electrons and opens up a gap, converting the nanotube into a semiconductor. Higher fields reverse the effect."

In addition to its electronic properties, a nanotube's mechanical and chemical properties also depend upon whether the tube is metallic or semiconducting, the researchers point out in their paper. These properties might also be controlled by a magnetic field.
-end-
The National Science Foundation and the U.S. Department of Energy funded the work.

University of Illinois at Urbana-Champaign

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.