Shark skin for airplanes, ships and wind energy plants

May 20, 2010

To lower the fuel consumption of airplanes and ships, it is necessary to reduce their flow resistance, or drag. An innovative paint system makes this possible. This not only lowers costs, it also reduces CO2 emissions.

The inspiration - and model - for the paint's structure comes from nature: The scales of fast-swimming sharks have evolved in a manner that significantly diminishes drag, or their resistance to the flow of currents. The challenge was to apply this knowledge to a paint that could withstand the extreme demands of aviation. Temperature fluctuations of -55 to +70 degrees Celsius; intensive UV radiation and high speeds. Yvonne Wilke, Dr. Volkmar Stenzel and Manfred Peschka of the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM in Bremen developed not only a paint that reduces aerodynamic drag, but also the associated manufacturing technology. In recognition of their achievement, the team is awarded the 2010 Joseph von Fraunhofer Prize.

The paint involves of a sophisticated formulation. An integral part of the recipe: the nanoparticles, which ensure that the paint withstands UV radiation, temperature change and mechanical loads, on an enduring basis. „Paint offers more advantages," explains Dr. Volkmar Stenzel. „It is applied as the outermost coating on the plane, so that no other layer of material is required. It adds no additional weight, and even when the airplane is stripped - about every five years, the paint has to be completely removed and reapplied - no additional costs are incurred. In addition, it can be applied to complex three-dimensional surfaces without a problem." The next step was to clarify how the paint could be put to practical use on a production scale. „Our solution consisted of not applying the paint directly, but instead through a stencil," says Manfred Peschka. This gives the paint its sharkskin structure. The unique challenge was to apply the fluid paint evenly in a thin layer on the stencil, and at the same time ensure that it can again be detached from the base even after UV radiation, which is required for hardening.

When applied to every airplane every year throughout the world, the paint could save a volume of 4.48 million tons of fuel. This also applies to ships: The team was able to reduce wall friction by more than five percent in a test with a ship construction testing facility. Extrapolated over one year, that means a potential savings of 2,000 tons of fuel for a large container ship. With this application, the algae or muscles that attach to the hull of a ship only complicate things further. Researchers are working on two solutions for the problem. Yvonne Wilke explains: „One possibility exists in structuring the paint in such a way that fouling organisms cannot get a firm grasp and are simply washed away at high speeds, for example. The second option aims at integrating an anti-fouling element - which is incompatible for nature."

Irrespective of the fuel savings, there are even more interesting applications - for instance, with wind energy farms. Here as well, air resistance has a negative effect on the rotor blades. The new paint would improve the degree of efficiency of the systems - and thus the energy gain.


Related Fuel Consumption Articles from Brightsurf:

Excessive alcohol consumption during the COVID-19 pandemic
The full impact of COVID-19 on alcohol use is not yet known, but rates have been rising during the first few months of the pandemic.

Evolution of consumption: A psychological ownership framework
Technological innovations are rapidly changing how we consume goods and services.

Comprehensive look at US fuel economy standards show big savings on fuel and emissions
In one of the first comprehensive assessments of the fuel economy standards in the US, researchers found that, over their 40-year history, the standards helped reduce reliance on foreign oil producers, saved $5 trillion in fuel costs and prevented 14 billion metric tons of carbon from being released into the atmosphere.

A smart way to predict building energy consumption
In a time of aging infrastructure and increasingly smart control of buildings, the ability to predict how buildings use energy -- and how much energy they use -- has remained elusive, until now.

Luxury consumption can fuel 'impostor syndrome' among some buyers
If you have the money, what could be wrong about purchasing a Swiss watch or an Italian sports car?

The influence of alcohol consumption among cohabitating partners
Research has linked a partner's or spouse's drinking with changes in alcohol-related behaviors, but few studies have considered only cohabiting relationships.

Competitive people are more prone to drug consumption
A Psychology research team at the University of Cordoba (Spain) studied how personality influences substance abuse among young people.

No need to cut down red and processed meat consumption
The researchers performed four systematic reviews focused on randomized controlled trials and observational studies looking at the impact of red meat and processed meat consumption on cardiometabolic and cancer outcomes.

Estimate of cigarette consumption in England
Estimated total cigarette consumption in England fell by almost one-quarter between 2011 and 2018 in a study comparing survey and sales data.

Clarifying the economic value of adjusting the power consumption
The economic value of demand response that adjusts the power consumption has not been clarified.

Read More: Fuel Consumption News and Fuel Consumption Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to