Taking control of key protein stifles cancer spread in mice

May 20, 2016

PROVIDENCE, R.I. [Brown University] -- For cancer to spread, the cells that take off into the bloodstream must find a tissue that will permit them to thrive. They don't just go looking, though. Instead, they actively prepare the tissue, in one case by co-opting a protein that suppresses defenses the body would otherwise mount. In a new study, scientists report that by wresting back control of that protein, they could restore multiple defenses in the lungs of mice, staving off cancer's spread there.

"Cancers are known to have the ability to co-opt or evade host anti-tumor responses," said Dr. Jack A. Elias, dean of medicine and biological sciences at Brown University and corresponding author of the study in the Nature journal Scientific Reports.

A key protein that apparently becomes co-opted is Chitinase 3-like-1 (CHI3L1), which has a natural purpose in a wide array of organisms where it helps to fight infections and stimulates tissue healing. However, it is also susceptible to going awry where it contributes to the generation of a variety of diseases. In human diseases like idiopathic pulmonary fibrosis it mounts an overzealous response that leads to pulmonary scarring, and in diseases like asthma it sustains a harmful immune response. People have a directly analogous version of the protein called YKL-40 and, in patients with cancer, high levels of its expression correlate strongly with advanced cancer spread and a poor prognosis.

Ina 2014 study, Elias's team at Brown and Yale found evidence that CHI3L1 has a central role in making tissues receptive to cancer spread.

"It seems to be a very fundamental pathway," said Elias, a specialist in pulmonary medicine and immunology. "It's not a pathway that's just in this disease or that disease. It's a fundamental way that the body responds, and as a result it has many different consequences."

In the new study, the researchers not only explained more about how CHI3L1 promotes cancer spread but they also tested a new intervention that had especially widespread effects. The scientists exposed mice to melanoma or breast cancer cells and then treated different mice at different times over the next eight days to suppress expression of CHI3L1. In treated mice they restored several mechanisms that the body has to fight tumors and were able to prevent the lungs from becoming hospitable to the cancer. Mice left untreated as experimental controls quickly developed cancer in their lungs after exposure to cancer cells.

Restoring defenses

Several experiments revealed the details of what was going on in the lungs of the mice. They defined a pathway that contributes to cancer spread by stimulating CHI3L1, a novel pathway that blocks CHI3L1 and cancer spread,, and highlighted the ways that tumors evade this antitumor response.

In the presence of cancer, for example, a protein called semaphorin 7A induces the expression of CHI3L1, which blunts a number of antitumor responses including those initiated by natural killer cells and a protein called PTEN. These studies also demonstrated that activation of a novel antiviral immune response pathway called the RIG-like helicase (RLH) pathway counteracts the ability of cancer cells to stimulate CHI3L1 and decreases the tumor-inducing effects that it mediates. Furthermore, they demonstrated that cancer cells stimulate another protein called NLRX1, which suppresses the RLH response that allows tumor cells to induce CHI3L1. Thus, Elias said, cancer cells stimulate CHI3L1 while simultaneously using NLRX1 to suppress the CHI3L1-inhibiting effects of the RLH pathway.

The new intervention that Elias's team tested was to bolster RLH immunity by stimulating its pathway with an RNA-like molecule called Poly(I:C). In mice this intervention reduced CHI3L1 production and its cancer-augmenting responses. While untreated mice went on to develop cancer in their lungs within two weeks, mice given Poly(I:C) fended the cancer off. Notably, among the effects was an increase in natural killer cells, natural killer cell recruiting proteins, stimulation of the proteins LIMK2 and PTEN and suppression of B-Raf and Nlrx1proteins. Recently scientists have attempted to develop cancer-fighting drugs by focusing on some of these individual proteins, but not multiple ones at the same time.

"What we show in this paper is there is a very novel pathway, the RLH pathway, that can actually control the production of CHI3L1," Elias said, "and when you can control the production of CHI3L1, you can control each of these pathways, and you can control the spread of cancer in these models"

In several of the experiments the team didn't just compare treated mice with untreated mice. Often they also used the additional controls of mice engineered to lack the gene that produces a particular protein, like CHI3L1. These steps helped to test whether the particular protein being investigated really played the suspected meaningful role.

It was clear that giving RLH the upper hand against CHI3L1 proved meaningful for suppressing cancer spread in the lungs of the mice.

"The thing that's exciting is that [stimulating the RLH pathway] is going to allow multiple antitumor response to be augmented vs. just one," Elias said. "If you can agonize the RLH pathway, you might get a really good effect in cancer."
-end-
The study's lead author is Bing Ma, assistant professor of molecular microbiology and immunology at Brown. The paper's other authors are Erica Herzog, Meagan Moore, Chang-Min Lee, Sung Hun Na and Chun Geun Lee.

The National Institutes of Health (grants: R01HL093017, UH2HL108638, R01HL115813, HL109233, HL125850) and the Korea Drug Development Fund (KDDF-20132-11) supported the research.

Brown University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.