Nav: Home

Modified microalgae converts sunlight into valuable medicine

May 20, 2016

Researchers from Copenhagen Plant Science Centre at University of Copenhagen have succeeded in manipulating a strain of microalgae to form complex molecules to an unprecedented extent. This may pave the way for an efficient, inexpensive and environmentally friendly method of producing a variety of chemicals, such as pharmaceutical compounds.

"So basically, the idea is that we hijack a portion of the energy produced by the microalgae from their photosynthetic systems. By redirecting that energy to a genetically modified part of the cell capable of producing various complex chemical materials, we induce the light driven biosynthesis of these compounds," says Post Doc Agnieszka Janina Zygadlo Nielsen, who along with colleagues Post Doc Thiyagarajan Gnanasekaran and PhD student Artur Jacek Wlodarczyk has been the main researcher behind the study.

The researchers have as such modified microalgae genetically to become small chemical factories with a build in power supply. According to the research team's study, this basically allows sunlight being transformed into everything ranging from chemotherapy or bioplastics to valuable flavor and fragrance compounds.

As Agnieszka Janina Zygadlo Nielsen describes, the problem with many of these substances today is namely that they are extremely expensive and difficult to make, and therefore produced only in small quantities in the medicinal plants.

"A cancer drug like Taxol for instance is made from old yew trees, which naturally produce the substance in their bark. It is a cumbersome process which results in expensive treatments. If we let the microalgae run the production this problem could be obsolete," she explains.

Sustainable production from wastewater

Thiyagarajan Gnanasekaran clarifies that the method can be run sustainably and continuously, and that this is what makes it even more spectacular compared to present methods.

"Our study shows that it is possible to optimize the enzymatic processes in the cells using only sunlight, water and CO2 by growing them in transparent plastic bags in a greenhouse. Theoretically, the water could be replaced with sewage water, which could make the process run on entirely renewable energy and nutrient sources. Recycling wastewater from industry and cities to produce valuable substances would surely be positive," he points out.

Agnieszka Janina Zygadlo Nielsen adds:

"If we can create a closed system that produces the valued chemicals from water, sunlight and CO2, it would be a fully competitive method compared to the ones used today, where it is primarily extracted from plants or yeast and E. coli bacteria producing the substances. In theory it should be cheaper on the long run to use our method than adding the large quantities of sugar that the conventional yeast and E.coli cultures amongst other things need to function."

A method with revolutionizing perspectives

However, the research team emphasizes that the method using genetically modified microalgae has its limitations at present time. As Thiyagarajan Gnanasekaran points out, the microalgae use much of the harnessed sunlight to keep their own metabolic processes running:

"It is difficult to produce large quantities of the desired compounds in microalgae because they have to use a large amount of the produced energy for themselves, since they are fully photosynthetic organisms. Exactly for this reason, it makes good sense to have them produce the particularly valuable substances which are cost effective to produce in relatively small quantities at a time, as for instance medicine."

However, according to the team the expanding methods and genetic tools for microalgae are likely to overcome these limitations within near future.
-end-
Copenhagen Plant Science Centre

Copenhagen Plant Science Centre is a research centre at the Department of Plant and Environmental Sciences at University of Copenhagen. Research and education is conducted in the fields of plant biology and plant biotechnology. We discover new and valuable aspects within the complex world of plants -- from the activity of the smallest molecules to the interactions in larger ecosystems.

Faculty of Science - University of Copenhagen

Related Microalgae Articles:

Algae and bacteria team up to increase hydrogen production
A University of Cordoba research group combined algae and bacteria in order to produce biohydrogen, fuel of the future
Protein factors increasing yield of a biofuel precursor in microscopic algae
Scientists at Tokyo Institute of Technology, Kyoto University, Kazusa DNA Research Institute, and Tohoku University have identified a protein, Lipid Remodeling reguLator 1 (LRL1), in microscopic algae that is involved in the production of triacylglycerol, a biofuel precursor.
Secrets of fluorescent microalgae could lead to super-efficient solar cells
Tiny light-emitting microalgae, found in the ocean, could hold the secret to the next generation of organic solar cells, according to new research carried out at the universities of Birmingham and Utrecht.
Water flea can smell fish and dive into the dark for protection
Zoologists at the University of Cologne have discovered the messenger substance responsible for the flight of the small planktonic crustacean Daphnia from fish in lakes.
Study shows continuing impacts of Deepwater Horizon oil spill
Nine years ago tomorrow -- April 20, 2010 -- crude oil began leaking from the Deepwater Horizon drilling rig into the Gulf of Mexico in what turned out to be the largest marine oil spill in history.
More Microalgae News and Microalgae Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...