Power up when the temperature is down

May 20, 2016

Transporting power sources in the coldest places may be easier with a new re-chargeable, non-metallic battery from Japan. This "eco battery" could provide portable sources of power in environments like refrigerated factories or extreme winter environments.

Chemists from Hiroshima University developed a new synthesis method for organic radical batteries that are re-chargeable and continue to function at below-freezing temperatures. The specific model prototyped by the Hiroshima University team has greater voltage than previously reported styles from other research groups around the world. The method used to create this battery is an improvement on a report from the same Hiroshima University laboratory earlier in 2016.

Most electrical devices use a lithium-ion battery. Lithium-ion batteries are safer than standard lithium metal batteries, but both styles rely on metal, a finite resource that is in decreasing supply. The same problem of decreasing supply exists for copper and cobalt batteries, like the traditional AA batteries in TV remote controls.

Organic radical re-chargeable batteries have the potential to be cheaper, safer, and longer-lasting than current metal-based batteries, earning them the "eco battery" title. This style of battery can re-charge faster than meal-based batteries, the difference of one minute instead of one hour, because they carry energy chemically rather than physically.

"The chemicals in the battery make it heavy and the synthesis process makes it expensive, so it won't replace other styles of batteries in the foreseeable future. But our battery could supplement traditional batteries in conditions where traditional Lithium-ion batteries can't work reliably, particularly in cold locations," said Professor Yohsuke Yamamoto, Ph.D., from Hiroshima University.

Eventually, organic radical batteries could potentially be made in flexible, transparent forms for use in wearable electronics.

The new organic radical synthesis method from the team of researchers at Hiroshima University is modeled on a process first report in 1985 by an American research group. Yamamoto was a member of that lab in the late 1980s and improved the process in recent years as part of work on unstable organic compounds.

"The original method we used took such a long time and relied on harmful chemicals. Now, over 20 years later, we can synthesize the compound much more quickly and safely.

"Fundamental research on unstable compounds creates a more detailed understanding of how chemicals bond. Applications like this new battery are the results of research that was never originally about any specific end product," Yamamoto said.

Yamamoto and collaborators are currently adapting the synthesis process further to make the battery lighter weight and ensure it retains its energy output after numerous re-charge cycles.
-end-
Find more Hiroshima University news on our Facebook page: http://www.facebook.com/HiroshimaUniversityResearch

Hiroshima University

Related Batteries Articles from Brightsurf:

New research says Sodium-ion batteries are a valid alternative to Lithium-ion batteries
A team of scientists including WMG at the University of Warwick combined their knowledge and expertise to assess the current status of the Na-ion technology from materials to cell development, offering a realistic comparison of the key performance indicators for NBs and LIBs.

Fast calculation dials in better batteries
A simpler and more efficient way to predict the performance of batteries will lead to better batteries, according to Rice University engineers.

Building the batteries of cells
A new study, led by Dr. Ruchika Anand and Prof.

Researchers create a roadmap to better multivalent batteries
Lithium-ion batteries power everything from mobile phones to laptop computers and electric vehicles, but demand is growing for less expensive and more readily available alternatives.

New NiMH batteries perform better when made from recycled old NiMH batteries
A new method for recycling old batteries can provide better performing and cheaper rechargeable hydride batteries (NiMH) as shown in a new study by researchers at Stockholm University.

Seeing 'under the hood' in batteries
A high-sensitivity X-ray technique at Berkeley Lab is attracting a growing group of scientists because it provides a deep, precise dive into battery chemistry.

Better, safer batteries
For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries.

New catalyst provides boost to next-generation EV batteries
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has introduced a new composite catalyst that could efficiently enhance the charg-discharge performances when applied to metal-air batteries (MABs).

New lithium batteries from used cell phones
Research from the University of Cordoba (Spain) and San Luis University (Argentina) was able to reuse graphite from cell phones to manufacture environmentally friendly batteries.

Safe potassium-ion batteries
Australian scientists have developed a nonflammable electrolyte for potassium and potassium-ion batteries, for applications in next-generation energy-storage systems beyond lithium technology.

Read More: Batteries News and Batteries Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.