Scientists explain how the giant magnetoelectric effect occurs in bismuth ferrite

May 20, 2016

A team of scientists from the Moscow Institute of Physics and Technology (MIPT), the National Research University of Electronic Technology (MIET), and the Prokhorov General Physics Institute have proposed a theoretical model that explains the unexpectedly high values of the linear magnetoelectric effect in BiFeO3 (bismuth ferrite) that have been observed in a number of experiments. The team also suggested a way of further enhancing the effect. The results of the study have been published in the journal Physical Review B.

One particular feature of bismuth ferrite is that in bulk samples, spins of Fe3+ iron ions are arranged in the form of a cycloid (Fig. 1). This spin structure can be destroyed by a strong magnetic field or mechanical stress. Without a spin cycloid, bismuth ferrite exhibits a large linear magnetoelectric effect, and this effect was the focal point of the study.

"The theoretical description presented in the paper may be applicable to other multiferroics similar to BiFeO3. This will help in predicting the value of their magnetoelectric effect, which, in turn, will make it easier to find new and promising materials for industrial applications," says the head of MIPT's Laboratory of physics of magnetic heterostructures and spintronics for energy-saving information technologies, Prof. Anatoly Zvezdin.

Multiferroics and the magneto electric effect

Multiferroics are materials that simultaneously exhibit different ferroic orders, including magnetic, ferroelectric and/or ferroelastic. If there is an interaction between electric and magnetic subsystems in a material, a magnetoelectric (ME) effect may occur.

The magnetoelectric effect is when electric polarization occurs under the influence of an external magnetic field and magnetization occurs under the influence of an electric field. This allows an electric field to be used to control the magnetic properties of a material and a magnetic field to be used to control the electric properties. If the value of the ME effect is high (dozens or hundreds of times higher than normal), it is called a giant ME effect.

The main use of the magnetoelectric effect is in variable and static magnetic field sensors. These sensors are used in navigation systems, electric motors, and also in vehicle ignition systems. Compared to similar devices based on the Hall effect or magnetoresistance, sensors based on the ME effect are more sensitive (according to research, up to one million times more sensitive) and they are also relatively cheap to manufacture.

The ME effect offers exciting possibilities for the use of multiferroics in new types of magnetic memory, e.g. ROM - read only memory. The ME effect could also potentially be used to create high-precision equipment for working with radiation in the microwave range, and to wirelessly transmit power to miniaturized electronic devices.

Bismuth ferrite

The subject of the study was bismuth ferrite (BiFeO3) - a highly promising multiferroic that is very promising in terms of its practical applications. It is planned to be used to create ultra energy-efficient magnetoelectric memory.

In addition, bismuth ferrite exhibits a magnetoelectric effect at room temperature, while in most other magnetoelectrics an ME effect of this magnitude is only observed at extremely low temperatures (below -160 degrees Celsius). Bismuth ferrite is an antiferromagnetic, which means that the magnetic moments of its magnetic sublattices (structures formed by atoms with the same parallel spins) cancel each other out, and the total magnetization of the material is close to zero. However, the spatial arrangement of the spins forms the same cycloidal spin structure (Fig. 1).

In the 1980s it was thought that this multiferroic exhibited only a quadratic magnetoelectric effect (i.e. polarization is quadratically proportional to the applied magnetic field). The fact that the linear magnetoelectric effect "went unnoticed" for a long time had to do with the spin cycloid (Fig. 1): due to the spin cycloid structure, certain characteristics, such as magnetization and the magnetoelectric effect "average out" to zero. However, when bismuth ferrite is placed in a strong magnetic field (greater than a certain critical value), the structure is destroyed and this is accompanied by the emergence of a linear ME effect (when polarization is linearly proportional to the applied field).

Early experiments indicated a low value of the linear magnetoelectric effect in bismuth ferrite (almost one thousand times lower than the actual value), however later experimental studies revealed a large ME effect and it was also demonstrated that by using it in layered structures, record values of the magnetoelectric effect can be achieved.

The authors of the paper developed a theoretical justification for the occurrence of the linear ME effect based on the Ginzburg-Landau theory and explained the previously large experimental value of the effect. As part of their theory, the researchers also showed that the ME effect could be enhanced in the presence of an electrostatic field.
-end-


Moscow Institute of Physics and Technology

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.