Looking beyond conventional networks can lead to better predictions

May 20, 2016

Zebra mussels, a ship-borne invasive species, are such a problem in American waters that they cost the U.S. power industry alone $3.1 billion in economic losses in 1993-1999, mainly by blocking pipes that deliver water to cooling plants. Researchers looking for a way to predict where they might end up next, so that preventive measures can be taken, have relied on network science, a way to identify patterns and meaningful connections in fields ranging from invasive species to international terrorism and social networks to infectious diseases.

Network science enables an understanding and modeling of the interconnected world, whether social, biological, physical or organizational. New research from a team of University of Notre Dame researchers led by Nitesh Chawla, Frank M. Freimann Professor of Computer Science and Engineering and Director of the Interdisciplinary Center for Network Science and Applications (iCeNSA), suggests that current algorithms to represent networks have not truly considered the complex inter-dependencies in data, which can lead to erroneous analysis or predictions. Chawla's team has developed a new algorithm that offers the promise of more precise network representation and accurate analysis.

"With this paper, we have made a significant advance in network theory to more accurately and precisely represent complex dependencies in data," Chawla said.

One example of how the algorithm works that the researchers cite in the paper is the study of invasive species driven by the global shipping network.

"Species may be carried unintentionally by ships from port to port and cause invasions, thus ship movements connect ports in the world in an implicit species flow network," Chawla said. "By identifying higher-order dependencies in ship movements, namely where a ship is more likely to go next given its previous steps, we can more accurately model ship movements and therefore species flow dynamics, for the analysis and prediction of invasive species."

Chawla described the new method as a general approach that can potentially influence a broad range of fields.

"For example, more accurately representing flow of information on networks can give a more accurate representation of the complex social interactions and the flow of information, which can be of interest for telecom companies, social media, and so on, "he said.. "This work also has strong applications for modeling infectious disease spreads, which are a function of complex dependencies (human to human, human to species, etc). Our method can readily be applied to other types of traffic data such as taxi movements and human trajectories, which the government can leverage for urban planning, and merchants can use for customer behavior analysis and prediction. The ability to extract and represent higher-order navigation patterns can also be used to analyze web clickstreams and network access patterns, with potential applications from website optimization to intruder detection (based on anomalous access patterns) for security and defense."

Chawla and his fellow researchers are the first to develop a variable higher-order network representation algorithm.

"It is a fundamental and transformative advance in network representation to automatically discover the orders of dependency among components of a complex interconnected world. " he said.
-end-
Jian Xu and Thanuka Wickramarathne from Notre Dame are coauthors of the paper, which appears in the journal Science Advances. The paper can be viewed at: http://advances.sciencemag.org/content/2/5/e1600028

University of Notre Dame

Related Invasive Species Articles from Brightsurf:

The invasive species that Europe needs to erradicate most urgently are identified
An international research team analyzed the risk impact and the effectiveness of possible erradication strategies for invasive species already in the region as well as those that have yet to arrive

Crayfish 'trapping' fails to control invasive species
Despite being championed by a host of celebrity chefs, crayfish 'trapping' is not helping to control invasive American signal crayfish, according to new research by UCL and King's College London.

Climate change is impacting the spread of invasive animal species
What factors influence the spread of invasive animal species in our oceans?

Invasive alien species may soon cause dramatic global biodiversity loss
An increase of 20 to 30 per cent of invasive non-native (alien) species would lead to dramatic future biodiversity loss worldwide.

Protected areas worldwide at risk of invasive species
Protected areas across the globe are effectively keeping invasive animals at bay, but the large majority of them are at risk of invasions, finds a involving UCL and led by the Chinese Academy of Science, in a study published in Nature Communications.

Charismatic invasive species have an easier time settling into new habitats
An international study, in which the University of Cordoba participated, assessed the influence of charisma in the handling of invasive species and concluded that the perception people have of them can hinder our control over these species and condition their spread

Invasive species with charisma have it easier
It's the outside that counts: Their charisma has an impact on the introduction and image of alien species and can even hinder their control.

Invasive species that threaten biodiversity on the Antarctic Peninsula are identified
Mediterranean mussels, seaweed and some species of land plants and invertebrates are among the 13 species that are most likely to damage the ecosystems on the Antarctic Peninsula.

Research networks can help BRICS countries combat invasive species
BRICS countries need more networks of researchers dedicated to invasion science if they wish to curb the spread of invasive species within and outside of their borders.

Look out, invasive species: The robots are coming
Researchers published the first experiments to gauge whether biomimetic robotic fish can induce fear-related changes in mosquitofish, aiming to discover whether the highly invasive species might be controlled without toxicants or trapping methods harmful to wildlife.

Read More: Invasive Species News and Invasive Species Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.