Nav: Home

Progress to restore movement in people with neuromotor disabilities

May 20, 2019

A study published in the advanced edition of 12 April in the journal Neural Computation shows that approaches based on Long Short-Term Memory decoders could provide better algorithms for neuroprostheses that employ Brain-Machine Interfaces to restore movement in patients with severe neuromotor disabilities.

This investigation was carried out by researchers of Duke University (USA) and has involved Núria Armengol, an alumna of the bachelor's degree in Biomedical Engineering at UPF who initiated this research topic for her end-of-degree project under the supervision of Ruben Moreno Bote, a researcher at the Center for Brain and Cognition (CBC) of the Department of Information and Communication Technologies (DTIC) at UPF, which she developed at Duke University (Durham, USA). Currently, Armengol is pursuing a master's degree at the Swiss Federal Institute of Technology in Zurich (ETH, Switzerland).

Although over the years many real-time neural decoding algorithms have been proposed for brain-machine interface (BMI) applications, recent advances in deep learning algorithms have improved the design of brain activity decoders involving recurrent artificial neural networks capable of decoding the activity of all neurons in real time.

As Núria Armengol explains, "for this study, we developed an LSTM decoder to extract the kinematics of the movement of the activity of large populations of neurons (N = 134-402), sampled simultaneously from multiple cortical areas of micus rhesus while they performed motor tasks".

The brain regions studied include primary motor areas and primary somatosensory cortical areas. The LSTM's capacity to retain information for extended periods of time enabled accurate decoding for tasks that required both movements and periods of immobility.

"Our LSTM algorithm significantly outperformed the Kalman filter (an analytical method that enables estimating unobservable state variables from observable variables) while the monkeys were performing different tasks on a treadmill (raising an arm, raising both arms or walking)", Armengol adds.

Notably, LSTM units exhibited a variety of well-known physiological features of cortical neuronal activity, such as directional tuning and neuronal dynamics during tasks. LSTM modelled several key physiological attributes of the cortical circuits involved in motor tasks. These discoveries suggest that LSTM-based approaches could provide a better algorithm strategy for neuroprostheses that employ Brain-Machine Interfaces to restore movement in patients with severe neuromotor disabilities.
-end-


Universitat Pompeu Fabra - Barcelona

Related Algorithms Articles:

Synergy emergence in deep reinforcement motor learning
Human motor control has always been efficient at executing complex movements naturally, efficiently, and without much thought involved.
Machine learning could improve the diagnosis of mastitis infections in cows
Artificial intelligence could help vets to more accurately diagnose the origin of mastitis on dairy herds, according to a new study from experts at the University of Nottingham.
How a new quantum approach can develop faster algorithms to deduce complex networks
Complex networks are ubiquitous in the real world, from artificial to purely natural ones, and they exhibit very similar geometric properties.
Algorithms 'consistently' more accurate than people in predicting recidivism, study says
In a study with potentially far-reaching implications for criminal justice in the United States, a team of California researchers has found that algorithms are significantly more accurate than humans in predicting which defendants will later be arrested for a new crime.
AI for #MeToo: Training algorithms to spot online trolls
Machine learning could be a powerful tool for allowing social media platforms to spot online trolls.
Finally, machine learning interprets gene regulation clearly
A new brand of artificial neural network has solved an interpretability problem that has frustrated biologists.
Developing a new AI breast cancer diagnostic tool
Scientists are developing a new way to identify the unique chemical 'fingerprints' for different types of breast cancers.
Artificial intelligence-based algorithm for intensive care of traumatic brain injury
A recent Finnish study, published in Scientific Reports, presents the first artificial intelligence (AI) based algorithm that may be utilized in the intensive care unit for treating patients with severe traumatic brain injury.
New algorithms train AI to avoid specific bad behaviors
Robots, self-driving cars and other intelligent machines could become better-behaved if machine-learning designers adopt a new framework for building AI with safeguards against specific undesirable outcomes.
New machine learning algorithms offer safety and fairness guarantees
Writing in Science, Thomas and his colleagues Yuriy Brun, Andrew Barto and graduate student Stephen Giguere at UMass Amherst, Bruno Castro da Silva at the Federal University of Rio Grande del Sol, Brazil, and Emma Brunskill at Stanford University this week introduce a new framework for designing machine learning algorithms that make it easier for users of the algorithm to specify safety and fairness constraints.
More Algorithms News and Algorithms Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.