Nav: Home

New method simplifies the search for protein receptor complexes, speeding drug development

May 20, 2019

For a drug to intervene in cells or entire organs that are not behaving normally it must first bind to specific protein receptors in the cell membranes. Receptors can change their molecular structure in a multitude of ways during binding - and only the right structure will "unlock" the drug's therapeutic effect.

Now, a new method of assessing the actions of medicines by matching them to their unique protein receptors has the potential to greatly accelerate drug development and diminish the number of drug trials that fail during clinical trials.

The method, developed by research teams from the University of Wisconsin-Milwaukee and the University of Glasgow, reduces the time and labor of finding the protein receptors "with the right response" to drug candidates by several orders of magnitude.

"It opens up a huge playing field for finding drug targets and drug stratification," said Valerica Raicu, UW-Milwaukee professor of physics. "Using this method, we can characterize how each receptor responds differently to various drug candidates."

The study appears today in the journal Nature Methods.

The researchers' method tracks a chemical process called oligomerization that occurs when a receptor exists as a single subunit, but then shifts to a multi-structure - an oligomer - in the presence of the ligand (drug compound), or vice versa.

"We used to think of these receptors as binary," said Raicu, who is lead author on the paper. "They were either activated by the compound or not. But now we are beginning to understand that, depending on the ligand, the same receptor can produce many different responses."

The researchers first tested the method using fused florescent proteins produced by UW-Milwaukee assistant professor Ionel Popa. Then they validated the method on a receptor for a growth factor where malfunction is often linked to cancer - the epidermal growth factor receptor (EGF). Activation of the receptor, resulted in the generation of larger oligomers, as anticipated.

The team then applied their method to a member of the G protein-coupled receptor (GPCR) family, a group of proteins that are targeted by a wide range of medicines.

The effect of the association between ligands and receptors was shown in a matter of hours, compared to months using current technologies.

"This new method of characterizing protein interactions will be important in the stratification of different medicines that target the same receptor," said Graeme Milligan, Gardiner Chair of Biochemistry at the University of Glasgow. "It will allow us to understand why some drug candidates are effective while others are not and can potentially be applied to different classes of proteins that are targets in the treatment of many diseases."

The Raicu lab uses fluorescence-based imaging in order to see protein receptors in oligomeric states under various environmental conditions. Using single- or two-photon excitation microscopy, the researchers can produce a kind of roadmap of the various kinds of protein receptor oligomers in the absence or presence of ligands (or drugs) that bind to them.

Researchers image protein-receptor molecules by attaching florescent tags. This way, single-molecule protein receptors give off light when they pass under a laser and are excited, and those bursts are recorded with a camera. Receptor oligomers give off a more intense burst of light and those are also photographed.

"Now you can graph the intensity and the number of bursts," said Raicu, "and see how many are associated into oligomers - how big they are - and where they are in the sample. After adding the ligand, you can see whether it promotes association of single molecules of receptor proteins into oligomers, or the breakdown of oligomers into the former."
-end-


University of Wisconsin - Milwaukee

Related Clinical Trials Articles:

Review evaluates how AI could boost the success of clinical trials
In a review publishing July 17, 2019 in the journal Trends in Pharmacological Sciences, researchers examined how artificial intelligence (AI) could affect drug development in the coming decade.
Kidney patients are neglected in clinical trials
The exclusion of patients with kidney diseases from clinical trials remains an unsolved problem that hinders optimal care of these patients.
Clinical trials beginning for possible preeclampsia treatment
For over 20 years, a team of researchers at Lund University has worked on developing a drug against preeclampsia -- a serious disorder which annually affects around 9 million pregnant women worldwide and is one of the main causes of death in both mothers and unborn babies.
Underenrollment in clinical trials: Patients not the problem
The authors of the study published this month in the Journal of Clinical Oncology investigated why many cancer clinical trials fail to enroll enough patients.
When designing clinical trials for huntington's disease, first ask the experts
Progress in understanding the genetic mutation responsible for Huntington's disease (HD) and at least some molecular underpinnings of the disease has resulted in a new era of clinical testing of potential treatments.
New ALS therapy in clinical trials
New research led by Washington University School of Medicine in St.
Telemedicine helps improve participation in clinical trials
Videos and creative uses of other visuals provide a novel way to obtain informed consent during clinical trials to improve participants' understanding and retention of trial information, according to a study by Nemours Children's Health System presented at the American Thoracic Society (ATS) Annual Conference.
Not enough women included in some heart disease clinical trials
Women are underrepresented in clinical trials for heart failure, coronary artery disease and acute coronary syndrome but proportionately or overrepresented in trials for hypertension, atrial fibrillation and pulmonary arterial hypertension, when compared to incidence or prevalence of women within each disease population, according to a study in the Journal of the American College of Cardiology.
BU: Obese patients underrepresented in cancer clinical trials
A new review by Boston University School of Public Health researchers found that less than one-fifth of participants in cancer-related clinical trials are obese.
Are women really under-represented in clinical trials?
Several studies have reported a lack of gender diversity in clinical trials, with trials including mostly adult males; however, a recent review of publicly available registration data of clinical trials at the US Food and Drug Administration for the most frequently prescribed drug classes found no evidence of any systemic significant under-representation of women.
More Clinical Trials News and Clinical Trials Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.