Nav: Home

Dog-like robot made by students jumps, flips and trots

May 20, 2019

Putting their own twist on robots that amble through complicated landscapes, the Stanford Student Robotics club's Extreme Mobility team at Stanford University has developed a four-legged robot that is not only capable of performing acrobatic tricks and traversing challenging terrain but is also designed with reproducibility in mind. Anyone who wants their own version of the robot, dubbed Stanford Doggo, can consult comprehensive plans, code and a supply list that the students have made freely available online.

"We had seen these other quadruped robots used in research, but they weren't something that you could bring into your own lab and use for your own projects," said Nathan Kau, '20, a mechanical engineering major and lead for Extreme Mobility. "We wanted Stanford Doggo to be this open source robot that you could build yourself on a relatively small budget."

Whereas other similar robots can cost tens or hundreds of thousands of dollars and require customized parts, the Extreme Mobility students estimate the cost of Stanford Doggo at less than $3,000 - including manufacturing and shipping costs - and nearly all the components can be bought as-is online. They hope the accessibility of these resources inspires a community of Stanford Doggo makers and researchers who develop innovative and meaningful spinoffs from their work.

Already Stanford Doggo can walk, trot, dance, hop, jump and perform the occasional backflip. The students are working on a larger version of their creation - which is currently about the size of a beagle - but will take a short break to present Stanford Doggo at the International Conference on Robotics and Automation May 21 in Montreal, Canada.

A hop, a jump and a backflip

In order to make Stanford Doggo replicable, the students built it from scratch. This meant spending a lot of time researching easily attainable supplies and testing each part as they made it, without relying on simulations.

"It's been about two years since we first had the idea to make a quadruped. We've definitely made several prototypes before we actually started working on this iteration of the dog," said Natalie Ferrante, '19, a mechanical engineering coterminal student and Extreme Mobility Team member. "It was very exciting the first time we got him to walk."

Stanford Doggo's first steps were admittedly toddling, but now the robot can maintain a consistent gait and desired trajectory, even as it encounters different terrains. It does this with the help of motors that sense external forces on the robot and determine how much force and torque each leg should apply in response. These motors recompute at 8,000 times a second and are essential to the robot's signature dance: a bouncy boogie that hides the fact that it has no springs. Instead, the motors act like a system of virtual springs, smoothly but perkily rebounding the robot into proper form whenever they sense it's out of position.

Among the skills and tricks the team added to the robot's repertoire, the students were exceptionally surprised at its jumping prowess. Running Stanford Doggo through its paces one (very) early morning in the lab, the team realized it was effortlessly popping up 2 feet in the air. By pushing the limits of the robot's software, Stanford Doggo was able to jump 3, then 3½ feet off the ground.

"This was when we realized that the robot was, in some respects, higher performing than other quadruped robots used in research, even though it was really low cost," recalled Kau.

Since then, the students have taught Stanford Doggo to do a backflip - but always on padding to allow for rapid trial and error experimentation.

What will Stanford Doggo do next?

If these students have it their way, the future of Stanford Doggo in the hands of the masses.

"We're hoping to provide a baseline system that anyone could build," said Patrick Slade, graduate student in aeronautics and astronautics and mentor for Extreme Mobility. "Say, for example, you wanted to work on search and rescue; you could outfit it with sensors and write code on top of ours that would let it climb rock piles or excavate through caves. Or maybe it's picking up stuff with an arm or carrying a package."

That's not to say they aren't continuing their own work. Extreme Mobility is collaborating with the Robotic Exploration Lab of Zachary Manchester, assistant professor of aeronautics and astronautics at Stanford, to test new control systems on a second Stanford Doggo. The team has also finished constructing a robot twice the size of Stanford Doggo that can carry about 6 kilograms of equipment. Its name is Stanford Woofer.
-end-


Stanford University

Related Robots Articles:

Robots popular with older adults
A new study by psychologists from the University of Jena (Germany) does not confirm that robot skepticism among elder people is often suspected in science.
Showing robots how to do your chores
By observing humans, robots learn to perform complex tasks, such as setting a table.
Designing better nursing care with robots
Robots are becoming an increasingly important part of human care, according to researchers based in Japan.
Darn you, R2! When can we blame robots?
A recent study finds that people are likely to blame robots for workplace accidents, but only if they believe the robots are autonomous.
Robots need a new philosophy to get a grip
Robots need to know the reason why they are doing a job if they are to effectively and safely work alongside people in the near future.
How can robots land like birds?
Birds can perch on a wide variety of surfaces, thick or thin, rough or slick.
Soft robots for all
Each year, soft robots gain new abilities. They can jump, squirm, and grip.
The robots that dementia caregivers want: robots for joy, robots for sorrow
A team of scientists spent six months co-designing robots with informal caregivers for people with dementia, such as family members.
Faster robots demoralize co-workers
A Cornell University-led team has found that when robots are beating humans in contests for cash prizes, people consider themselves less competent and expend slightly less effort -- and they tend to dislike the robots.
Increasing skepticism against robots
In Europe, people are more reserved regarding robots than they were five years ago.
More Robots News and Robots Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.