Nav: Home

Superconductor's magnetic persona unmasked

May 20, 2019

In the pantheon of unconventional superconductors, iron selenide is a rock star. But new experiments by U.S., Chinese and European physicists have found the material's magnetic persona to be unexpectedly mundane.

Rice University physicist Pengcheng Dai, corresponding author of a study of the results published online this week in Nature Materials, offered this bottom-line assessment of iron selenide: "It's a garden-variety iron-based superconductor. The fundamental physics of superconductivity are similar to what we find in all the other iron-based superconductors."

That conclusion is based on data from neutron scattering experiments performed over the past year in the U.S., Germany and the United Kingdom. The experiments produced the first measurements of the dynamic magnetic properties of iron selenide crystals that had undergone a characteristic structural shift that occurs as the material is cooled but before it is cooled to the point of superconductivity.

"Iron selenide is completely different from all the other iron-based superconductors in several ways," said Dai, a professor of physics and astronomy at Rice and a member of Rice's Center for Quantum Materials (RCQM). "It has the simplest structure, being composed of only two elements. All the others have at least three elements and much more complicated structure. Iron selenide is also the only one that has no magnetic order and no parent compound."

Dozens of iron-based superconductors have been discovered since 2008. In each, the iron atoms form a 2D sheet that's sandwiched between top and bottom sheets made up of other elements. In the case of iron selenide, the top and bottom sheets are pure selenium, but in other materials these sheets are made of two or more elements. In iron selenide and other iron-based superconductors, iron atoms in the central 2D sheet are spaced in checkerboard fashion, exactly the same distance from one another in both the left-right direction and forward-back directions.

As the materials cool, they undergo a slight structural shift. Instead of exact squares, the iron atoms form oblong rhombuses. These are like baseball diamonds, where the distance between home plate and second base is shorter than the distance between first and third base. And this change between iron atoms causes the iron-based superconductors to exhibit directionally-dependent behavior, like increased electrical resistance or conductivity only in the direction of home-to-second or first-to-third.

Physicists refer to this directionally dependent behavior as anisotropy or nematicity, and while structural nematicity is known to occur in iron selenide, Dai said it has been impossible to measure the exact electronic and magnetic order of the material because of a property known as twinning. Twinning occurs when layers of randomly oriented 2D crystals are stacked. Imagine 100 baseball diamonds stacked one atop the other, with the line between home plate and second base varying randomly for each.

"Even if there is directionally dependent electronic order in a twinned sample, you cannot measure it because those differences average out and you wind up measuring a net effect of zero," Dai said. "We had to detwin samples of iron selenide to see if there was nematic electronic order."

Study lead author Tong Chen, a third-year PhD student in Dai's research group, solved the twinning problem by cleverly piggybacking on a 2014 study in which Dai and colleagues applied pressure to detwin crystals of barium iron arsenide. It was impossible to apply the same method to iron selenide because the crystals were 100 times smaller, so Chen glued the smaller crystals atop the larger ones, reasoning that the pressure needed to align the larger sample would also cause the layers of iron selenide to snap into alignment.

Chen spent weeks creating several samples to test in neutron scattering beams. About 20 to 30 1-millimeter squares of iron selenide had to be aligned and placed atop each crystal of barium iron arsenide. And applying each of the tiny squares was painstaking work that involved a microscope, tweezers and special, hydrogen-free glue that cost almost $1,000 per ounce.

The work paid off when Chen tested the samples and found the iron selenide was detwinned. Those tests with neutron scattering beams at Oak Ridge National Laboratory, the National Institute of Standards and Technology, the Technical University of Munich and U.K.'s Rutherford-Appleton Laboratory also showed iron selenide's electronic behavior is very similar to that of other iron superconductors.

"The key conclusion is that the magnetic correlations that are associated with superconductivity in iron selenide are highly anisotropic, just as they are in other iron superconductors," Dai said. "That has been a very controversial point, because iron selenide, unlike all other iron-based superconductors, does not have a parent compound that exhibits antiferromagnetic order, which has led some to suggest that superconductivity arose in iron selenide in a completely different way than it arises in these others. Our results suggest that is not the case. You don't need an entirely new method to understand it."
-end-
Additional co-authors include Rui Zhang and Yu Li, both of Rice; Youzhe Chen of Johns Hopkins University; Andreas Kreisel of the University of Leipzig; Xingye Lu and Yan Rong, both of Beijing Normal University; Astrid Schneidewind of the Jülich Center for Neutron Sciences; Yiming Qiu of the National Institute of Standards and Technology; Jitae Park of the Technical University of Munich; Toby Perring and Ross Stewart, both of the Rutherford-Appleton Laboratory; Huibo Cao of Oak Ridge National Laboratory; Yuan Wei of the Chinese Academy of Sciences; Brian Andersen of the University of Copenhagen; P.J. Hirschfeld of the University of Florida; and Collin Broholm of both Johns Hopkins University and the National Institute of Standards and Technology.

The research was supported by the Department of Energy (DE-SC0012311, DE-FG02-08ER46544, DE-FG02-05ER46236), the Welch Foundation (C-1839), the National Natural Science Foundation of China (11734002), the Carlsberg Foundation, the National Institute of Standards and Technology (DMR-1508249) and the National Science Foundation (DMR-1508249).

RCQM leverages global partnerships and the strengths of more than 20 Rice University research groups to address questions related to quantum materials. RCQM is supported by Rice's offices of the Provost and the Vice Provost for Research, the Wiess School of Natural Sciences, the Brown School of Engineering, the Smalley Curl Institute and the departments of Physics and Astronomy, Electrical and Computer Engineering, and Materials Science and NanoEngineering.

Related materials:

The DOI of the Nature Materials paper is: 10.1038/s41563-019-0369-5

A copy of the paper is available at: http://dx.doi.org/10.1038/s41563-019-0369-5

Pengcheng Dai Group: pdai.phys.rice.edu/

Rice Department of Physics and Astronomy: physics.rice.edu

Wiess School of Natural Sciences: naturalsciences.rice.edu/

Related research from Rice:

Quirky kindred compounds could crack quantum code -- Dec. 20, 2018

https://news.rice.edu/2018/12/20/quirky-kindred-compounds-could-crack-quantum-code/

'Magnetic topological insulator' makes its own magnetic field -- Nov. 19, 2018

http://news.rice.edu/2018/11/19/magnetic-topological-insulator-makes-its-own-magnetic-field%E2%80%A8/

A superconductor story with a twist -- Aug. 7, 2018

http://news.rice.edu/2018/08/07/a-superconductor-story-with-a-twist/

Rice U. physicists discover new type of quantum material -- Dec. 18, 2017

http://news.rice.edu/2017/12/18/rice-u-physicists-discover-new-type-of-quantum-material-2/

Rules for superconductivity mirrored in 'excitonic insulator' -- Dec. 7, 2017

http://news.rice.edu/2017/12/07/rules-for-superconductivity-mirrored-in-excitonic-insulator-2/

Copper stripes help iron pnictide lock in insulating state -- Dec. 19, 2016

http://news.rice.edu/2016/12/19/copper-stripes-help-iron-pnictide-lock-in-insulating-state-2/

Physicists probe magnetic fluctuations in heavy fermions -- Sept. 29, 2016

http://news.rice.edu/2016/09/29/physicists-probe-magnetic-fluctuations-in-heavy-fermion-2/

Study finds physical link to strange electronic behavior -- July 31, 2014

http://news.rice.edu/2014/07/31/study-finds-physical-link-to-strange-electronic-behavior/

This news release can be found online at news.rice.edu.

Follow Rice News and Media Relations on Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Rice University

Related Superconductivity Articles:

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.
First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Superconductivity is heating up
Theory suggests that metallic hydrogen should be a superconductor at room temperature; however, this material has yet to be produced in the lab.
Light pulses provide a new route to enhance superconductivity
Scientists have shown that pulses of light could be used to turn materials into superconductors through an unconventional type of superconductivity known as 'eta pairing.'
Graphene on the way to superconductivity
Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance.
New quantum criticality discovered in superconductivity
Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S.
More Superconductivity News and Superconductivity Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab