Nav: Home

Reverse-engineered computer model provides new insights into larval behavior

May 20, 2019

Scientists have developed a new approach to describe the behaviours of microscopic marine larvae, which will improve future predictions of how they disperse and distribute.

A study by the University of Plymouth and the National Oceanography Centre, published in Proceedings of the National Academy of Sciences of the United States of America, abandons previously used methods to reveal new insights into larval behaviour in the ocean through reverse-engineering.

Computer simulations of the ocean are commonly used to predict how animals and plants move through water, an approach known as biophysical modelling.

The models combine in-depth knowledge of ocean currents with predictions of how larvae may behave and respond to environmental and biological cues such as light, gravity or pheromones.

These factors lead to changes in how they are distributed throughout the water column, and understanding this is especially important as many marine organisms are weak swimmers and rely on ocean currents - which reduce in speed and change direction with depth - to help them move.

Previously, researchers have described larval behaviour by scaling-up laboratory observations - for instance, programming simulated larvae to swim up and down in the water column in response to light cues - but since little is known about how effectively larvae respond to these cues in nature, it can result in the models failing to accurately predict dispersal.

The new research allows scientists to predict the direction and speed that larvae would have to swim for models to best match the patterns observed in nature, without knowledge of the mechanisms of their movement.

The study was led by PhD candidate Molly James and Associate Professor in Marine Ecology Dr Antony Knights, from the University of Plymouth's School of Biological and Marine Sciences, and they found the swimming behaviours of larvae necessary to replicate natural patterns were markedly different to those suggested by laboratory studies.

They believe this ground-breaking method for assessing larval behaviour - which can be applied to any species with a dispersive larval phase - will dramatically enhance our understanding of how the tiniest lifeforms disperse in marine, freshwater and even terrestrial environments.

Molly, a BSc (Hons) Marine Biology and Oceanography graduate, said: "The majority of marine species have a larval development stage, and these larvae are a key component of ocean food webs. Understanding the ecology of larvae is therefore critical, as it will enhance our wider knowledge of the marine environment. Our research does go against previous thinking, but we believe it provides a real step change in how scientists can predict the dispersal of marine species now and in the future."

Dr Knights, whose research involves using field-based experiments and theoretical models to assess how populations respond to anthropogenic and environmental pressures, added: "Species dispersal has been a key research focus for many years. Global climate change leads to shifts and expansion in the distribution of terrestrial and marine species altering the structure and functioning of ecosystems, therefore understanding dispersal is imperative to ecosystem management. Our study provides a toolbox for dispersal modellers, providing a realistic insight into behaviour that hasn't been available before."
-end-


University of Plymouth

Related Marine Species Articles:

Marine species distribution shifts will continue under ocean warming
Scientists using a high-resolution global climate model and historical observations of species distributions on the Northeast US Shelf have found that commercially important species will continue to shift their distribution as ocean waters warm two to three times faster than the global average through the end of this century.
New species of bus-sized fossil marine reptile unearthed in Russia
A new species of a fossil pliosaur (large predatory marine reptile from the 'age of dinosaur') has been found in Russia and profoundly change how we understand the evolution of the group, says an international team of scientists.
Marine conservation must consider human rights
Ocean conservation is essential for protecting the marine environment and safeguarding the resources that people rely on for livelihoods and food security.
New species of Brazilian copepod suggests ancient species diversification and distribution
A new species and genus of a tiny freshwater copepod has been found in the Brazilian rocky savannas, an ecosystem under heavy anthropogenic pressure.
Are drones disturbing marine mammals?
Marine researchers have made sure that their research drones aren't disturbing their research subjects, shows a report in Frontiers in Marine Science.
Genomic tools for species discovery inflate estimates of species numbers, U-Michigan biologists contend
Increasingly popular techniques that infer species boundaries in animals and plants solely by analyzing genetic differences are flawed and can lead to inflated diversity estimates, according to a new study from two University of Michigan evolutionary biologists.
Hong Kong hosts more than a quarter of all marine species recorded in China
Hong Kong has a record of 5,943 marine species according to a recent review by a research group led by Professor Gray A.
'Mic check' for marine mammals
Hearing is a vital sense for marine mammals who use it to forage, communicate and navigate.
Human transport has unpredictable genetic and evolutionary consequences for marine species
New research, led by the University of Southampton, has found that human activities such as shipping are having a noticeable impact on marine species and their native habitats.
Warming temperatures can reduce marine diversity but increase freshwater species
In contrast to previous research, scientists have found that habitat warming can reduce the diversity of species in marine environments, but increase speciation in freshwater habitats.

Related Marine Species Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...