Nav: Home

Air pollution affects tree growth in São Paulo

May 20, 2019

As well as causing significant harm to human health, air pollution also stunts the growth of trees, one of the very elements that can attenuate this typically urban environmental problem.

Researchers at the University of São Paulo (USP) in Brazil have shown that atmospheric pollutants restrict tree growth and the ecosystem services provided by trees, such as filtering pollution by absorbing airborne metals in their bark, assimilating CO2, reducing the heat island effect by attenuating solar radiation, mitigating stormwater runoff, and controlling humidity.

The study was supported by São Paulo Research Foundation FAPESP. The results have been published in the journal Science of the Total Environment.

"We found that in years when levels of particulate matter in the atmosphere were higher, for example, the trees grew less. As a result, they started later in their lives to provide ecosystem services that play an important role in reducing urban pollution and mitigating or adapting the city to climate change," said Giuliano Maselli Locosselli, a postdoctoral researcher at the University of São Paulo's Bioscience Institute (IB-USP) with a scholarship from FAPESP and first author of the study.

Using as a model the tipuana tree (Tipuana tipu), also known as rosewood or tipu, a tall tree with a large spreading canopy and ubiquitous in the city, the researchers measured the impact of air pollution and weather on tree growth in São Paulo. They analyzed samples of 41 tipuanas aged 36 on average and located at different distances from the Capuava industrial estate in Mauá, a municipality in the metropolitan area. Capuava is one of the most industrialized districts in the region, with oil refineries, cement plants and fertilizer factories, as well as heavy truck and car traffic.

Samples were taken from the trees' growth rings using an instrument called a Pressler increment borer, which has a hollow auger bit and is designed to extract a cylindrical section of wood tissue from a living tree throughout its radius with relatively minor injury to the plant. All samples were taken at chest height, approximately 1.3 m from the topsoil.

By analyzing the chemical composition of the bark and the size of the growth rings, the researchers were able to measure variations in air pollution levels based on the various chemical elements to which the trees were exposed during their development and to estimate how this factor influenced tree growth.

"The tipuana is an excellent marker that clearly represents levels of air pollution by heavy metals and other chemical elements in the city," Locosselli said.

Metals and other chemicals suspended in the air are absorbed by bark. Particulate matter is deposited on leaves, increasing their temperature and reducing the supply of light for photosynthesis. Growth rings indicate how pollution has affected the life of the plant year by year. Thicker rings indicate years of vigorous growth and lower levels of pollution, while thinner rings indicate the reverse.

Analysis of growth rings showed that these tipuanas grew faster in the warmer parts of Capuava with higher levels of phosphorus in the air. Phosphorus is a known macronutrient for plants and acts as the basis of their energy metabolism via photosynthesis and respiration.

On the other hand, trees close to traffic and exposed to high levels of aluminum, barium and zinc associated with the wearing of automotive parts (such as tires, brake linings and clutch plates) displayed less growth over time.

Particulate matter with a diameter of up to 10 micrometers (PM10) emitted by factories and plants reduced average tree growth by as much as 37%.

"Trees exposed directly to high levels of pollution from the factories in the area grew less in terms of trunk diameter development throughout their lives than plants exposed to medium and low levels," Locosselli said. "Under normal growth conditions, a tipuana's chest-height diameter can reach 1 meter."

Time series for levels of PM10 in Capuava over a 20-year period were obtained from the São Paulo State Environmental Corporation (CETESB) and compared with the results of the bark and leaf analysis.

The researchers found PM10 levels to account for 41% of interannual tree growth rate variability, with higher levels of pollution during the driest months (April-September) reducing the growth rate.

"Diameter increases very quickly when the tree is growing normally but changes little when the growth rate is slow," Locosselli said. "The magnitude of the ecosystem services provided by a tall tree can be 70 times greater than for a small tree."

Effects on trees

According to the authors of the study, heavy metals and particulate matter influence tree growth by changing the optical properties of leaf surfaces. As mentioned, these pollutants raise temperatures and reduce the availability of light for photosynthesis. They may also reduce gas exchange due to accumulation on leaf stomata (pores that open and close to allow the intake of carbon dioxide and the release of oxygen).

"We plan to try to find out whether pollution also affects the longevity of these trees. Given that pollution restricts various physiological systems, hampering plant growth, it probably also makes them more vulnerable to effects that lead to senescence," said Marcos Buckeridge, a professor in IB-USP and principal investigator for the research project.

Urban pollution probably also damages other species in the same family as tipuana found in São Paulo, such as partridgewood (Caesalpinia pluviosa) and ironwood (C. leiostachya).

"Measures to reduce air pollution, such as fostering biofuel use, the electrification of transport and the development of materials to decrease emissions of heavy metals, could enhance the maintenance of these trees and the ecosystem services they provide," Buckeridge said.
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.