Nav: Home

Climate change will turn coastal Antarctica green, say scientists

May 20, 2020

Scientists have created the first ever large-scale map of microscopic algae as they bloomed across the surface of snow along the Antarctic Peninsula coast. Results indicate that this 'green snow' is likely to spread as global temperatures increase.

The team, involving researchers from the University of Cambridge and the British Antarctic Survey, combined satellite data with on-the-ground observations over two summers in Antarctica to detect and measure the green snow algae. Although each individual alga is microscopic in size, when they grow en masse they turn the snow bright green and can be seen from space. The study is published today in the journal Nature Communications.

"This is a significant advance in our understanding of land-based life on Antarctica, and how it might change in the coming years as the climate warms," said Dr Matt Davey in the University of Cambridge's Department of Plant Sciences, who led the study. "Snow algae are a key component of the continent's ability to capture carbon dioxide from the atmosphere through photosynthesis."

Blooms of green snow algae are found around the Antarctic coastline, particularly on islands along the west coast of the Antarctic Peninsula. They grow in 'warmer' areas, where average temperatures are just above zero degrees Celsius during the austral summer - the Southern Hemisphere's summer months of November to February. The Peninsula is the part of Antarctica that experienced the most rapid warming in the latter part of the last century.

The team found that the distribution of green snow algae is also strongly influenced by marine birds and mammals, whose excrement acts as a highly nutritious natural fertiliser to accelerate algal growth. Over 60% of blooms were found within five kilometres of a penguin colony. Algae were also observed growing near the nesting sites of other birds, including skuas, and areas where seals come ashore.

The team used images from the European Space Agency's Sentinel 2 satellite taken between 2017 and 2019, and combined these with measurements they made on the ground in Antarctica at Ryder Bay, Adelaide Island, and the Fildes Peninsula, King George Island.

"We identified 1679 separate blooms of green algae on the snow surface, which together covered an area of 1.9 km2, equating to a carbon sink of around 479 tonnes per year" said Davey. Put into context this is the same amount of carbon emitted by about 875,000 average petrol car journeys in the UK.

Almost two thirds of the green algal blooms were on small, low-lying islands with no high ground. As the Antarctic Peninsula warms due to rising global temperatures, these islands may lose their summer snow cover and with it their snow algae. However, in terms of mass, the majority of snow algae is found in a small number of larger blooms in the north of the Peninsula and the South Shetland Islands, in areas where they can spread to higher ground as low-lying snow melts.

"As Antarctica warms, we predict the overall mass of snow algae will increase, as the spread to higher ground will significantly outweigh the loss of small island patches of algae," said Dr Andrew Gray, lead author of the paper, and a researcher at the University of Cambridge and NERC Field Spectroscopy Facility, Edinburgh.

Photosynthesis is the process in which plants and algae generate their own energy, using sunlight to capture carbon dioxide from the atmosphere and release oxygen. There are many different types of algae, from the tiny, single-celled species measured in this study, to large leafy species like giant kelp. The majority of algae live in watery environments, and when excess nitrogen and phosphorous are available they can multiply rapidly to create visible algal blooms.

The researchers say that the total amount of carbon held in Antarctic snow algae is likely to be much larger because carbon dioxide is also taken up by other red and orange algae, which could not be measured in this study. They plan further work to measure these other algal blooms, and also to measure the blooms across the whole of Antarctica using a mixture of field work and satellite images.

Antarctica is the world's southernmost continent, typically known as a frozen land of snow and ice. But terrestrial life can be abundant, particularly along its coastline, and is responding rapidly to climate changes in the region. Mosses and lichens form the two biggest visible groups of photosynthesising organisms, and have been the most studied to date. This new study has found that microscopic algae also play an important role in Antarctica's ecosystem and its carbon cycling.
-end-


University of Cambridge

Related Antarctica Articles:

Antarctica: cracks in the ice
In recent years, the Pine Island Glacier and the Thwaites Glacier on West-Antarctica have been undergoing rapid changes, with potentially major consequences for rising sea levels.
Equatorial winds ripple down to Antarctica
A CIRES-led team has uncovered a critical connection between winds at Earth's equator and atmospheric waves 6,000 miles away at the South Pole.
Antarctica more widely impacted by humans than previously thought
Using a data set of 2.7 million human activity records, the team showed just how extensive human use of Antarctica has been over the last 200 years
Antarctica more widely impacted than previously thought
Researchers at Australia's Monash University, using a data set of 2.7 million human activity records, have shown just how extensive human use of Antarctica has been over the last 200 years.
Predicting non-native invasions in Antarctica
A new study identifies the non-native species most likely to invade the Antarctic Peninsula region over the next decade.
Persistent drizzle at sub-zero temps in Antarctica
When the temperature drops below freezing, snow and ice are expected to follow.
Human 'footprint' on Antarctica measured for first time
The full extent of the human 'footprint' on Antarctica has been revealed for the first time by new IMAS-led research which used satellite images to measure stations, huts, runways, waste sites and tourist camps at 158 locations.
Iguana-sized dinosaur cousin discovered in Antarctica
Scientists have discovered the fossils of an iguana-sized reptile, which they named 'Antarctic king,' that lived at the South Pole 250 million years ago (it used to be warmer).
Scientists drill to record depths in West Antarctica
A team of scientists and engineers has for the first time successfully drilled over two kilometres through the ice sheet in West Antarctica using hot water.
Is Antarctica becoming more like Greenland?
Antarctica is high and dry and mostly bitterly cold, and it's easy to think of its ice and snow as locked away in a freezer, protected from melt except around its low-lying coasts and floating ice shelves.
More Antarctica News and Antarctica Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.