Nav: Home

Cutting edge two-photon microscopy system breaks new grounds in retinal imaging

May 20, 2020

Retina is the only part of the central nervous system (CNS) that can be visualized noninvasively with optical imaging approaches. Direct retinal imaging plays an important role not only in understanding diseased eye and ocular therapeutic discovery, but also study of a variety of well-defined CNS disorders. Accumulated evidences have shown that certain neurodegenerative diseases that affect the brain and spinal cord also have manifestations in the retina, and ocular symptoms always precede traditional diagnosis of such diseases, such as Alzheimer's disease, Parkinson's disease and multiple sclerosis.

But as prevalent retinal imaging tools provide limited resolution, photos taken previously are often inadequate to resolve the subcellular structures and dynamics of retinal neurons, mainly attributed to the large optical aberrations of the living eye.

In a recent breakthrough, a team of scientists at the Hong Kong University of Science and Technology developed an adaptive optics two-photon excitation fluorescence microscopy (AO-TPEFM) using direct wavefront sensing for high-resolution in vivo fluorescence imaging of mouse retina, which allow in vivo fundus imaging at an unprecedented resolution after full AO correction. The advance will provide a much-needed tool to study biological processes in retina, and would also shed new light on the neurodegenerative diseases in the central nervous system (CNS).

Their work was published in the journal Light: Science & Applications on May 6, 2020.

"In this work, we advance two-photon microscopy for near-diffraction-limited and functional retinal imaging in living mice," said Prof. Jianan QU, lead researcher and Professor at the Department of Electronic and Computer Engineering, HKUST. "The localized two-photon fluorescence signals were used as nonlinear guide stars to achieve accurate measurement of ocular aberrations at the imaging location. We demonstrate that depth-resolved structures in different retinal layers can be resolved allowing for a wide range of studies which are infeasible otherwise."

AO is a technology used to improve the performance of an optical system by deforming a mirror in order to correct for the distortion(s). AO was first invented to remove the effects of atmospheric distortion in astronomical telescopes and laser communication systems.

In addition to enabling simultaneously functional calcium imaging of somas and dendrites of RGCs, AO-TPEFM also achieves precise axotomy and time-lapse imaging of axonal degeneration with femtosecond laser induced microsurgery.

"Direct wavefront sensing based on nonlinear fluorescent guide stars would be advantageous for accurate measurement of ocular aberrations at the exact imaging location, and thus permits highly efficient AO correction." said Prof. Qu. "As the technology is more widely deployed, AO-TPEFM could help investigate the development of neurodegenerative diseases, since the eye offers a window into nerves of the central nervous system that link the eye with the brain."
-end-


Hong Kong University of Science and Technology

Related Neurodegenerative Diseases Articles:

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
How understanding the dynamics of yeast prions can shed light on neurodegenerative diseases
New family of molecules to join altered receptors in neurodegenerative diseases
An article published in the Journal of Medicinal Chemistry shows a new family of molecules with high affinity to join imidazoline receptors, which are altered in the brain of those patients with neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's.
Examining diagnoses of stress-related disorders, risk of neurodegenerative diseases
Researchers investigated how stress-related disorders (such as posttraumatic stress disorder, adjustment disorder and stress reactions) were associated with risk for neurodegenerative diseases, including Alzheimer and Parkinson disease and amyotrophic lateral sclerosis (ALS), using data from national health registers in Sweden.
Toxic protein, linked to Alzheimer's and neurodegenerative diseases, exposed in new detail
The protein tau has long been implicated in Alzheimer's and a host of other debilitating brain diseases.
Study uncovers unexpected connection between gliomas, neurodegenerative diseases
New basic science and clinical research identifies TAU, the same protein studied in the development of Alzheimer's, as a biomarker for glioma development.
Neurodegenerative diseases may be caused by transportation failures inside neurons
Protein clumps are routinely found in the brains of patients with neurodegenerative diseases.
Study suggests a protein could play key role in neurodegenerative diseases
Research led by Queen Mary University of London and the University of Seville around one protein's role in regulating brain inflammation could improve our understanding of neurodegenerative diseases.
Beyond finding a gene: Same repeated stretch of DNA in three neurodegenerative diseases
Four different rare diseases are all caused by the same short segment of DNA repeated too many times, a mutation researchers call noncoding expanded tandem repeats.
Protein complex may help prevent neurodegenerative diseases
The protein complex NAC in the cell helps to prevent the aggregration of proteins associated with several neurodegenerative diseases.
More Neurodegenerative Diseases News and Neurodegenerative Diseases Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.