Nav: Home

New liver cancer research targets non-cancer cells to blunt tumor growth

May 20, 2020

PHILADELPHIA -- "Senotherapy," a treatment that uses small molecule drugs to target "senescent" cells, or those cells that no longer undergo cell division, blunts liver tumor progression in animal models according to new research from a team led by Celeste Simon, PhD, a professor of Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania and scientific director of the Abramson Family Cancer Research Institute. The study was published in Nature Cell Biology.

"This kind of therapy is not something that has been tried before with liver cancer," Simon said. "And in our models, so-called 'senolytic' therapy greatly reduced disease burden, even in cases with advanced disease."

Loss of the enzyme FBP1 in human liver cells significantly increases tumor growth. Previous research has shown FBP1 levels are decreased in stage 1 tumors, and further reduced as the disease progresses. In this study, Simon and her team used RNA-sequencing data to identify FBP1 as universally under-expressed in the most common form of liver cancer, hepatocelluar carcinoma, regardless of underlying causes like obesity, alcoholism, and hepatitis.

The loss of FBP1 in liver cells activates the neighboring hepatic "stellate cells"--which make up ten percent of liver mass--causing fibrosis (tissue scarring) and subsequent stellate cell senescence, both of which promote tumor growth. Researchers found that these senescent stellate cells can be selectively targeted by senolytics, including Navitoclax (already in clinical trials for other diseases, like hematological malignancies), in order to blunt tumor progression driven by liver cell-specific FBP1 loss.

The team provides the first genetic evidence for FBP1 as a bona fide metabolic tumor suppressor in the liver and that its loss in liver cells promotes the growth of tumors because of effects on other cells within the tumor microenvironment.

Using genetically engineered mouse models, the team eliminated FBP1and found the disease progressed more rapidly and tumor burden greatly increased in carcinogen-mediated, dietary, and other forms of hepatocellular carcinoma.

"The case with liver cancer is very dire, once you get beyond a certain stage there are limited, if any, treatments available," Simon said. "As obesity rates continue to increase and viral infections continue to be a problem, there is going to be an increasing surge of liver cancer which currently has few treatment options. And since FBP1 activity is also lost in renal cancer, FBP1 depletion may be generally applicable to a number of human cancers. What's unique about our senotherapy approach is that we are specifically targeting other cells in the liver tumor environment rather than the cancer cells themselves."
-end-
Next steps, according to researchers will be to begin to test these treatments in a clinical setting. Additional Penn authors include Fuming Li, Peiwei Huangyang, Michelle Burrows, Kathy Guo, Romain Riscal, Jason Godfrey, Kyoung Eun Lee, Nan Lin, Pearl Lee, Ian A. Blair, and Brian Keith, as well as Bo Li, of Sun Yat-sen University. This work was supported by the National Key Research and Development Program (2016YFA0502600) of China and the National Cancer Institute (P01CA104838, R35CA197602 and P30CA016520).

University of Pennsylvania School of Medicine

Related Liver Cancer Articles:

New liver cancer research targets non-cancer cells to blunt tumor growth
'Senotherapy,' a treatment that uses small molecule drugs to target ''senescent'' cells, or those cells that no longer undergo cell division, blunts liver tumor progression in animal models according to new research from a team led by Celeste Simon, PhD, a professor of Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania and scientific director of the Abramson Family Cancer Research Institute.
Liver cancer: Awareness of hepatitis D must be raised
Scientists from the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) have studied the most serious consequence of chronic hepatitis: hepatocellular carcinoma.
A new treatment for liver cancer
In the latest issue of Molecular Therapy, Skoltech and MIT researchers have published a new combinatorial therapy for the treatment of liver cancer.
New study indicates exercise can help prevent liver cancer
Liver cancer is the fourth most common cause of cancer death worldwide and is growing rapidly due to the 'diabesity pandemic.' A new study reported in the Journal of Hepatology, published by Elsevier, provides strong evidence that voluntary exercise could help prevent the most common type of liver cancer, hepatocellular carcinoma, and identifies the molecular signaling pathways involved.
From obesity to liver cancer: Can we prevent the worst?
Hepatocellular carcinoma, a liver cancer linked to the presence of fat in the liver, is one of the leading causes of cancer death worldwide.
Liver cancer deaths climb by around 50% in the last decade
Liver cancer deaths have increased by around 50% in the last decade and have tripled since records began, according to the latest calculations by Cancer Research UK.
NUS researchers show potential liver cancer treatment by targeting cancer stem-like cells
NUS researchers from the Cancer Science Institute of Singapore and the N.1 Institute for Health have shown the potential use of small molecule inhibitors to treat advanced liver cancer.
Breast cancer gene a potential target for childhood liver cancer treatment
Hepatoblastoma is a rare liver cancer that mainly affects infants and young children and is associated with mutations in the β-catenin gene.
Blood transfusion during liver cancer surgery linked with higher risk of cancer recurrence and death
Receiving a blood transfusion during curative surgery for the most common type of liver cancer (hepatocellular carcinoma) is associated with a much higher risk of cancer recurrence and dying prematurely, according to new research being presented at this year's Euroanaesthesia congress.
Blocking platelets: A possible option to prevent fatty liver disease and liver cancer
Blood platelets which interact with liver cells and immune cells play a major role in the development of fatty liver disease, non-alcoholic fatty liver inflammation and liver cancer, scientists from the German Cancer Research Center (DKFZ) in Heidelberg and from Zurich University and University Hospital have now shown in a publication.
More Liver Cancer News and Liver Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.