Nav: Home

At the crossroads

May 20, 2020

On average, the human body contains 35 trillion red blood cells (RBCs). Approximately three million of these small disc-shaped cells die in one second. But in this second, the same number is also produced to maintain the level of active RBCs. Interestingly, all of these cells undergo a multi-level differentiation process called erythropoiesis. They start from hematopoietic stem cells (HSCs), the precursors to every blood cell including all types of immune cells, and differentiate then, firstly, into multipotent progenitor cells (MPPs) followed by a gradual process of specialization into mature red blood cells.

If this differentiation process fails, it can be detrimental to our health. For instance, if fewer HSCs choose to follow the RBCs roadmap, the individual will be prone to develop anemia. Abnormalities in the immune cell roadmap, on the other hand, have been associated with the onset of leukemia.

Epigenetic modulation in early hematopoiesis

The lab of Asifa Akhtar at the MPI of Immunobiology and Epigenetics in Freiburg investigates what governs the differentiation process of blood cells. Now, the teams has identified how the enzyme MOF, an epigenetic regulator, orchestrate the HSC fate in erythropoiesis.

"One of the most important intrinsic cues governing cell developmental processes is the modulation of the chromatin landscape," says Asifa Akhtar. In our cells, DNA is packaged around histone proteins to make the chromatin structure. This packaging plays a crucial role in cell type-specific gene regulation and, of course, also in erythroid differentiation. In its default state chromatin is not "permissive", meaning genes are switched off. But shifting histones opens the chromatin and promotes gene expression.

Epigenetic regulator guides HSCs on the right path

The enzyme MOF is known to directly trigger the "opening" of chromatin by acetylating the H4 histone on one specific site (K16ac). When the lab tracked the MOF occupancy during the erythropoiesis in mice, they found that the enzyme dynamically orchestrates erythropoiesis by regulating chromatin accessibility of HSCs and RBC progenitors. "Our data shows that the correct dosage and timing of Mof during blood cell development is essential to prime the chromatin for activation of the erythroid development program. This process ensures the correct transcription factor network that will be pivotal for the erythroid branch," says first-author Cecilia Pessoa Rodrigues.

The Max Planck researchers are convinced that these findings could mean considerable progress in our understanding of the erythroid lineage commitment and may give rise to new therapeutic approaches in diseases such as leukemia or anemia. Although the precise consequence of MOF depletion in humans remains unanswered, it is already known that a balanced and controlled activity of epigenetic regulators is essential for the normal development of hematopoietic cells. "It is not surprising that low levels of MOF are linked to acute myeloid leukemia (AML). We anticipate this could be explained by chromatin acetylation imbalance that is critical for relevant factors required for normal hematopoiesis. Revealing the right levels of chromatin accessibility and, subsequently, the gene regulatory mechanisms that fine-tune the differentiation trajectories will be insightful for further understanding of hematopoiesis in healthy and diseased states," says Asifa Akhtar.
-end-


Max Planck Institute of Immunobiology and Epigenetics

Related Chromatin Articles:

Allelic imbalance of chromatin openness is linked to neuropsychiatric disorders
New study finds single nucleotide polymorphisms (SNPs) affect chromatin accessibility, which in turn affects whether or not a gene can be expressed
FloChiP, a new tool optimizing gene-regulation studies
EPFL scientists have developed FloChip, a new microfluidic take on the widely used chromatin immunoprecipitation (ChIP) technique.
At the crossroads
In the bone marrow, blood stem cells via precursor cells give rise to a variety of blood cell types with various functions: white blood cells, red blood cells, or blood platelets.
Dock and harbor: A novel mechanism for controlling genes
In a recent study published in Molecular Cell, researchers at Kanazawa University report the role of cellular structures called PML bodies in regulating gene function.
Clinical implications of chromatin accessibility in human cancers
Volume 11, Issue 18 of @Oncotarget Clinical implications of chromatin accessibility assessed by ATAC-seq profiling in human cancers especially in a large patient cohort is largely unknown.
New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.
Opening up DNA to delete disease
Protein editorial assistants are clearing the way for cut-and-paste DNA editors, like CRISPR, to access previously inaccessible genes of interest.
Chromatin organizes itself into 3D 'forests' in single cells
Scientists are increasingly interested in the function of chromatin -- a mix of DNA and protein within chromosomes -- and its role in disease.
Unraveling gene expression
EPFL chemists have uncovered the first steps in the process of gene expression by showing how the protein Rap1 pries open the tightly wound, compacted structure of DNA in the cell to gain access to specific genes.
Argonaute proteins help fine-tune gene expression
A protein, with a name reminiscent of legendary Greek sailors, has an unexpected role inside the human nucleus.
More Chromatin News and Chromatin Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.