Chemical recycling makes useful product from waste bioplastic

May 20, 2020

A faster, more efficient way of recycling plant-based "bioplastics" has been developed by a team of scientists at the Universities of Birmingham and Bath.

The team has shown how their chemical recycling method not only speeds up the process, it can also be converted into a new product - a biodegradable solvent - which can be sold for use in a wide variety of industries including cosmetics and pharmaceuticals.

Bioplastics, made from polylactic acid (PLA), are becoming increasingly common in products such as disposable cups, packaging materials and even children's toys. Typically, once they reach the end of their useful life, they are disposed of in landfill or composted, biodegrading over periods of up to several months.

In a new study, researchers have shown that a chemical process, using a zinc-based catalyst developed at the University of Bath and methanol, can be used to break down real consumer plastics and produce the green solvent, called methyl lactate. Their results are published in the journal Industrial & Engineering Chemistry Research.

The team tested their method on three separate PLA products- a disposable cup, some 3D printer waste, and a children's toy. They found the cup was most easily converted to methyl lactate at lower temperatures, but even the bulkier plastic in the children's toy could be converted using higher temperatures. "We were excited to see that it was possible to obtain high quantities of the green solvent regardless of samples' characteristics due to colorants, additives, sizes and even molecular weight.", said lead author Luis Román-Ramírez of the University of Birmingham's School of Chemical Engineering.

Lead researcher Professor Joe Wood, at the University of Birmingham, says: "The process we've designed has real potential to contribute to ongoing efforts to reduce the amount of plastic going into landfill or being incinerated creating new valuable products from waste.

"Our technique breaks down the plastics into their chemical building blocks before 'rebuilding' them into a new product, so we can guarantee that the new product is of sufficiently high quality for use in other products and processes."

The chemical process has been tried up to 300 ml, so next steps would include scaling up the reactor further before it can be used in an industrial setting. The research was funded by the Engineering and Physical Sciences Research Council.
-end-
Notes to editor:

* The University of Birmingham is ranked amongst the world's top 100 institutions. Its work brings people from across the world to Birmingham, including researchers, teachers and more than 6,500 international students from over 150 countries.

* Román-Ramírez et al. (2020). 'Chemical Degradation of end-of-life Poly(lactic acid) into Methyl Lactate by a Zn(II) Complex'. Industrial & Engineering Chemistry Research.

University of Birmingham

Related Plastic Articles from Brightsurf:

Is zoom increasing the demand for plastic surgery
Patients are seeking plastic surgery in record numbers, citing their appearance on Zoom as a cause.

Closing the plastic loop
Researchers develop a one-pot, low temperature catalytic method to turn polyethylene polymers into alkylaromatic molecules.

Does science have a plastic problem? Microbiologists take steps to reducing plastic waste
A research group based at the University of Edinburgh's Roslin Institute, developed an approach to reduce plastic waste produced by their lab.

Plastic-eating enzyme 'cocktail' heralds new hope for plastic waste
The UK-US team who re-engineered the plastic-eating enzyme PETase have now created an enzyme 'cocktail' which can digest plastic up to six times faster.

Scientists sound alarm on plastic pollution
A new study shows that despite global commitments to address plastic pollution, growth in plastic waste, or 'plastics emissions' continues to outpace reduction.

Ecologists sound alarm on plastic pollution
Research led by ecologists at the University of Toronto examining plastic pollution entering oceans, rivers and lakes around the world annually, outlines potential impacts of various mitigation strategies over the coming decade.

The persistence of plastic
The amount of synthetic microfiber we shed into our waterways has been of great concern over the last few years, and for good reason: Every laundry cycle releases in its wastewater tens of thousands of tiny, near-invisible plastic fibers whose persistence and accumulation can affect aquatic habitats and food systems, and ultimately our own bodies in ways we have yet to discover.

There is at least 10 times more plastic in the Atlantic than previously thought
Scientists measured 12-21 million tonnes of three of the most common types of plastic in the top 200 metres of the Atlantic.

Seafood study finds plastic in all samples
A study of five different seafoods has found traces of plastic in every sample tested.

A world drowning in plastic pollution
Almost one billion tonnes of plastic will be dumped on land and in the oceans over the period from 2016 to 2040 unless the world acts, say a team of 17 global experts who have developed a computer model to track the stocks and flows of plastic around the world.

Read More: Plastic News and Plastic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.