'Walkthru Project' renders real-time 3d models for engineering and architecture

May 21, 2001

Basic computer science research could lead to better, safer structures

Computer scientists at the University of North Carolina (UNC) are helping architects and engineers to create extremely detailed virtual structures that designers can "walk through," letting them head off potential problems before a spade of dirt is overturned or a bolt is fastened.

The WalkThru Project, led by UNC computer science professors Fred Brooks and Dinesh Manocha, is funded by the National Science Foundation (NSF) Division of Advanced Computational Infrastructure and Research. The UNC team develops new algorithms and software for advanced prototyping that could yield safer yet more cost-efficient buildings and vessels.

"The overall goal is to create interactive computer graphics systems that let a viewer experience complex 3D spatial models by simulating walk-throughs of the actual facility," said Brooks, who started the project in the mid-1980s.

The computer scientists take very large CAD/CAM (computer-assisted design and manufacture) models and render them as fully navigable 3D environments, including a tanker with 82-million separate elements and a 13-million-element electric power station. Until now, such complex virtual structures yielded slow, jerky graphics that did not permit real-time navigation and manipulation.

Cosmetically, the WalkThru tanker simulation looks coarser than what movie-goers have come to expect since Titanic. But it has a level of technical realism that more than equals anything Hollywood has done. Its 3D space is completely navigable from stem to stern, consisting of 82 million triangles.

Synthetic environments that succeed in providing a realistic experience for their users can also be used for collaboration between far-flung design teams. This helps limit travel time and costs, as an engineer in the U.S. can talk by speaker phone with a colleague overseas, while they both walk through the same 3D environment.

"One of the challenges," Manocha said, "is to develop a scalable system to achieve real-time walkthroughs of very large CAD/CAM models with high-accuracy rendering of spatial arrangements. We write efficient algorithms to accelerate rendering and improve collision detection, as when the user 'bumps' into a stationary structure."

CAD/CAM and architectural models may contain millions of small 3D elements, called "primitives." To display these models at interactive rates, developers must write algorithms to reduce the number of primitives that the graphics system is required to render. The team is also developing algorithms to assign processor priority according to each element's visibility, which permits users to see and interact with the model at a greater level of detail.

Although WalkThru Project models were developed on advanced graphical workstations made by Silicon Graphics, Inc., they will also run on high-end PCs. The walkthroughs can also be viewed in immersive virtual reality caverns that let the user experience the simulations on a life-size scale.

In 2000, Brooks received the Turing award -- the highest honor in computer science -- from the Association for Computing Machinery. Manocha was a 1995 recipient of the NSF CAREER award for promising young faculty. Other team members include UNC computer science faculty Anselmo Lastra (rendering acceleration algorithms) and Ming Lin (collision detection and proximity simulation).

"Over the years, this project has depended on excellent graduate students who have gone on to work at places such as Lucent Bell Labs, Johns Hopkins University, the University of Virginia and other top institutions," Brooks said. "Our faculty have paid close attention to the educational aspect."

The team's simulation and 3D model of a coal-fired power plant are available for non-commercial public use. Collaborative partners of the WalkThru Project include General Dynamics, Newport News Shipbuilding and the NASA Jet Propulsion Laboratory. In addition to NSF, other federal sponsors have included the National Institutes of Health, the U.S. Army and Navy, the Defense Advanced Research Projects Agency and the U.S. Department of Energy.
For more about the WalkThru Project, see: http://www.cs.unc.edu/~walk
For 3D animations, see: http://www.cs.unc.edu/~geom/rendering/videos.shtml

National Science Foundation

Related Algorithms Articles from Brightsurf:

A multidisciplinary policy design to protect consumers from AI collusion
Legal scholars, computer scientists and economists must work together to prevent unlawful price-surging behaviors from artificial intelligence (AI) algorithms used by rivals in a competitive market, argue Emilio Calvano and colleagues in this Policy Forum.

Students develop tool to predict the carbon footprint of algorithms
Within the scientific community, it is estimated that artificial intelligence -- otherwise meant to serve as a means to effectively combat climate change -- will become one of the most egregious CO2 culprits should current trends continue.

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you
Scientists at Lawrence Berkeley National Laboratory have developed a new tool that adapts machine learning algorithms to the needs of synthetic biology to guide development systematically.

Algorithms uncover cancers' hidden genetic losses and gains
Limitations in DNA sequencing technology make it difficult to detect some major mutations often linked to cancer, such as the loss or duplication of parts of chromosomes.

Managing data flow boosts cyber-physical system performance
Researchers have developed a suite of algorithms to improve the performance of cyber-physical systems - from autonomous vehicles to smart power grids - by balancing each component's need for data with how fast that data can be sent and received.

New theory hints at more efficient way to develop quantum algorithms
A new theory could bring a way to make quantum algorithm development less of an accidental process, say Purdue University scientists.

AI as good as the average radiologist in identifying breast cancer
Researchers at Karolinska Institutet and Karolinska University Hospital in Sweden have compared the ability of three different artificial intelligence (AI) algorithms to identify breast cancer based on previously taken mammograms.

Context reduces racial bias in hate speech detection algorithms
When it comes to accurately flagging hate speech on social media, context matters, says a new USC study aimed at reducing errors that could amplify racial bias.

Researchers discover algorithms and neural circuit mechanisms of escape responses
Prof. WEN Quan from School of Life Sciences, University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has proposed the algorithms and circuit mechanisms for the robust and flexible motor states of nematodes during escape responses.

Lightning fast algorithms can lighten the load of 3D hologram generation
Tokyo, Japan - Researchers from Tokyo Metropolitan University have developed a new way of calculating simple holograms for heads-up displays (HUDs) and near-eye displays (NEDs).

Read More: Algorithms News and Algorithms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.