Nav: Home

Switching off brain circuit renders mice 'out of touch' with environment

May 21, 2015

The sense of touch is important but often taken for granted in daily life because it seems simple and automatic. New research suggests that the apparent simplicity of tactile sensation comes from a clever two-stage brain circuit. By manipulating this circuit with light-driven optical genetic tools, researchers made laboratory mice literally "lose touch" with their surroundings as their feet became unable to sense rough or smooth surfaces.

The study published in Neuron by a team at the RIKEN Brain Science Institute in Japan, shows that the perception of touch relies on two signals, one from the skin to the brain and another within the brain itself. This second signal relays the first signal from a lower-level brain area to a higher one and then boomerangs it back to the lower level. The higher brain area is required for touch perception and its inactivation renders mice unable to use sensations in their footpads to discriminate different floor textures.

The research team led by Dr. Masanori Murayama observed the brains of mice after touching their paws and saw immediate activity in the sensory cortex -- the brain area that receives signals from the skin. Unexpectedly, they recorded a second slower source of activity tens of milliseconds after the first. Murayama explains, "we investigated the source of this second activation and found that high level motor cortex receives information from the sensory cortex and sends it back to the sensory cortex. This means that, for tactile perception, the flow of information from the skin to brain requires communication not only from the periphery to the brain but also reverberation between two brain areas."

While it was previously thought that one signal from the skin to the brain was sufficient to produce touch sensation, this study reveals that without the second signal, mice cannot feel or use the incoming sensory information, suggesting that they may not even perceive differences in texture. To investigate this idea, the researchers trained mice to distinguish two different floor textures, rough or smooth, by associating one of them with a food reward. When they prevented the second signal by shutting off the responsible neurons with light-activated optical genetic technology, the mice could not distinguish differences in floor texture.

"Our results show that a reverberant neural circuit from sensory cortex to higher motor cortex is required for the perception of touch", said lead researcher Satoshi Manita. Murayama speculates that this two-stage circuit design may be a safety mechanism to ensure continuous accurate perception even when distracted by other senses, such as when feeling a steering wheel while concentrating on the road. "This form of perception, an external signal and its internal rebound, may extend to other senses," concludes Murayama, "and we may find that communication between brain areas refines perception for more accurate and integrated behavior."
-end-
Reference:Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, Yamada K, Ota K, Matsubara C, Inutsuka A, Sato M, Ohkura M, Yamanaka A, Yanagawa Y, Nakai J, Hayashi Y, Larkum ME and Murayama M (2015). A Top-Down Cortical Circuit for Accurate Sensory Perception. Neuron. Doi: 10.1016/j.neuron.2015.05.006

RIKEN

Related Brain Articles:

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.