Soft machines

May 21, 2018

In the world of robotics, soft robots are the new kids on the block. The unique capabilities of these automata are to bend, deform, stretch, twist or squeeze in all the ways that conventional rigid robots cannot.

Today, it is easy to envision a world in which humans and robots collaborate -- in close proximity -- in many realms. Emerging soft robots may help to ensure that this can be done safely, and in a way that syncs to human environments or even interfaces with humans themselves.

"Some of the advantages of soft robotic systems are that they can easily adapt to unstructured environments, or to irregular or soft surfaces, such as the human body," said UC Santa Barbara electrical and computer engineering professor Yon Visell.

Despite their promise, to date, most soft robots move slowly and clumsily when compared with many conventional robots. However, the gap is narrowing thanks to new developments in the fundamental unit of robotic motion: the actuator. Responsible for the mechanical movement of a mechanism or a machine, actuators do their work in various ways, relying on electromagnetic, piezoelectric, pneumatic or other forces.

Now, Visell and his UCSB collaborators have married the electromagnetic drives used in most conventional robotic systems with soft materials, in order to achieve both speed and softness. "An interesting biological analog to the actuator described in our new work might be a fast twitch muscle," said Visell, who along with UCSB chemistry and biochemistry professor Thuc-Quyen Nguyen, and postdocs Thanh Nho Do and Hung Phan, authored the paper "Soft Electromagnetic Actuators for Robotic Applications." The article appears on the cover of the journal Advanced Functional Materials.

The main challenge for Visell and colleagues was to build an actuator that could achieve speeds greater than what has typically been possible with soft robotic actuators, many of which depend on slow processes, such as air flow or thermal effects.

"In this project, we wanted to see how far we could push the idea of having very fast, low-voltage actuation within a fully soft robotic paradigm," he said. They based their work on the electromagnetic motor, a common type of fast and low-voltage actuator that is used in everything from electric cars to appliances, but has seen little effective application in soft robotic systems.

The team's work has resulted in a type of actuator that is fast, low voltage and soft -- and also remarkably small, just a few millimeters in size. Using unique, liquid-metal alloy conductors encased in hollow polymer fibers and magnetized polymer composites, the researchers created patterned, three-dimensional components that form the basis of soft analogs of standard electrical motors. The fibers themselves are polymer composites that the team engineered to have high thermal conductivity, greatly improving their performance.

"We realized components that are each soft and stretchable, and combined them to create these motor-like structures that can move things," Visell said. To demonstrate, they created a tiny, millimeters-wide gripper that can close in just milliseconds, and a soft tactile stimulator that can operate at frequencies of hundreds of cycles per second.

These devices could find use in emerging areas such as haptics, where touch feedback is sought for applications including virtual reality and, of course haptics' close relative -- soft robotics. "These soft electromagnetic actuators can be used to create tactile displays that conform to human skin, or miniature robotic tools for surgical endoscopy or other medical applications," said postdoc Thanh Nho Do.

"We look forward to applying these new soft robotic technologies in areas ranging from virtual reality, augmented reality, wearable technologies, healthcare and medicine," Visell said. "The horizon is wide open."
-end-


University of California - Santa Barbara

Related Robotics Articles from Brightsurf:

Borrowing from robotics, scientists automate mapping of quantum systems
Riddhi Gupta has taken an algorithm used for autonomous vehicles and adapted it to help characterise and stabilise quantum technology.

COVID-19 should be wake-up call for robotics research
Robots could perform some of the 'dull, dirty and dangerous' jobs associated with combating the COVID-19 pandemic, but that would require many new capabilities not currently being funded or developed, an editorial in the journal Science Robotics argues.

How robots can help combat COVID-19: Science Robotics editorial
Can robots be effective tools in combating the COVID-19 pandemic?

Novel use of robotics for neuroendovascular procedures
The advanced technology has the potential to change acute stroke treatment.

Robotics: Teaming for future soldier combat
The US Army's investment for the 10 year, Army-led foundational research program has resulted in advanced science in four critical areas of ground combat robotics that affect the way US Warfighters see, think, move and team.

New haptic arm places robotics within easy reach
Imagine being able to build and use a robotic device without the need for expensive, specialist kit or skills.

AI-guided robotics enable automation of complex synthetic biological molecules
This article describes a platform that combines artificial intelligence-driven synthesis planning, flow chemistry and a robotically controlled experimental platform to minimize the need for human intervention in the synthesis of small organic molecules.

A step forward in wearable robotics: Exosuit assists with both walking and running
A soft robotic exosuit -- worn like a pair of shorts -- can make both walking and running easier for the wearer, a new study reports.

A first in medical robotics: Autonomous navigation inside the body
Bioengineers at Boston Children's Hospital report the first demonstration of a robot able to navigate autonomously inside the body.

Engineers build a soft robotics perception system inspired by humans
An international team of researchers has developed a perception system for soft robots inspired by the way humans process information about their own bodies in space and in relation to other objects and people.

Read More: Robotics News and Robotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.