The insulin under the influence of light

May 21, 2019

The disruption of our internal clocks seems to play a significant role in the explosion of metabolic diseases observed in recent decades, and particularly of diabetes. Indeed, if the importance of day-night alternation on the effect of insulin and on the body's glycaemic management is beginning to be known, what about the mechanisms involved? How does the organism synchronize its clocks? By understanding how the brain links the effects of insulin to light, researchers at the University of Geneva (UNIGE) are deciphering how insulin sensitivity fluctuates according to circadian cycles, but also according to the organs involved. At the heart of their discovery are neurons of the ventromedial hypothalamic nucleus, a part of the brain that masters this delicate balance. These results, to be discovered in the journal Cell Reports, should also encourage diabetic patients and their doctors to consider the best time to take insulin to properly control its effect and limit the risk of hypoglycaemia.

The balance between the secretion and action of hormones is essential for the body to function properly. Thus, the secretion of several hormones, including insulin, varies over a 24-hour period and any change in this rhythm seems to predispose to metabolic diseases. To synchronize itself, the body takes into account two essential elements: the alternation of light and darkness as well as that of feeding and fasting. Indeed, the light perceived by retinal neurons is transmitted to the brain, which in turn regulates the peripheral clocks located in the different parts of the body.

"Our hypothesis was that insulin sensitivity varied according to the daily 24-hour cycle but also according to the tissues. Since we already knew that some neurons in the ventromedial hypothalamic nucleus (VMH) - a region of the hypothalamus - controlled the sympathetic nervous system output to skeletal muscle in mice, we looked at these neurons - called VMH SF1 neurons - in regulating insulin action in this tissue", explains Roberto Coppari, Professor at the Diabetes Centre of UNIGE Faculty of Medicine, who led this work.

From the brain to the organs: different mechanisms depending on the tissue

First, the scientists performed a complete evaluation of insulin action in different tissues in mice (gastrocnemius and soleus muscles, both located in the leg, adipose tissue, and liver) and observed significant variation in all tissues involved. By keeping mice in a cycle of 12 hours of light and 12 hours of darkness, insulin sensitivity was logically the lowest during the rest period. They then repeated the same measurements on animals in which the SIRT1 gene (a gene linked to the regulation of core clock molecular components) was deleted only in the few thousands of VMH SF1 neurons. "Indeed, we already knew that mice with an alteration of this gene in VMH SF1 neurons had propensity to insulin resistance. But by which mechanism?", explains Giorgio Ramadori, a researcher at the Diabetes Centre and the first author of this study. By modulating the time of exposure to light, the researchers demonstrated that the SIRT1 gene of the VMH SF1 neurons plays a key role in the action of insulin in the gastrocnemius muscle, "but not in other tissues," Roberto Coppari analyses. "This teaches us two things: on the one hand, different neurons have the task of conveying light/darkness cycle inputs to diverse organs, but on the other hand the disruption of only one of these regulatory pathways is enough to increase the individual's risk of developing diabetes."

To better assess the effect of light on tissue sensitivity to insulin, researchers measured insulin-induced glucose absorption. It turns out that a small disturbance in photic inputs (e.g. an hour of light exposure in the middle of the dark cycle, or light removal for 2 days) is enough to cause a negative effect. Indeed, increased or decreased light exposure can profoundly influence the sensitivity of tissues to insulin and the alteration, however minimal, of this mechanism is sufficient to significantly disrupt metabolic homeostasis. This would explain why people exposed to light at the wrong time - workers in shift patterns, for example - are more likely to develop metabolic diseases (e.g. diabetes).

Taking into account the time of day

Today, more than 450 million people worldwide have diabetes and many of them need daily insulin injections. When endogenous insulin is not produced in sufficient amounts, such as in people with type 1 diabetes insulin, therapy is the only treatment available, but this approach is not without risk - including a potentially severe hypoglycaemia that can lead to coma and even death. "In practice, the amount of insulin administered to patients is calculated on the basis of carbohydrate intake," says Roberto Coppari. If, as our results indicate, insulin sensitivity varies with time of day and individuals' circadian rhythm, this parameter should be taken into account for patients to better manage their treatment and limit its risks. "Beyond insulin, the influence of time of day on the effectiveness of drug treatments should be studied much more broadly."
-end-


Université de Genève

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.