Nav: Home

Scientists discover potential breakthrough in the understanding of tumor dormancy

May 21, 2019

Scientists at VCU Massey Cancer Center may have uncovered a primary method through which cancer cells exist undetected in an organism and received more than $1 million to investigate the potential for novel therapeutics that target and destroy cells in a specific state of tumor dormancy.

Cancer cells often migrate from the organ in which they originated and hide in a state of inactivity elsewhere in the body. These cells can reactivate at anytime and pose a serious risk of recurrence and metastatic disease. The likelihood of curing cancer is greatly reduced once the disease has spread.

Tumor dormancy remains one of the greater mysteries in regard to the scientific understanding of cancer progression; identifying and killing inactive tumor cells persists as a prominent challenge in the field of cancer treatment.

However, ongoing research at Massey may provide major new insight for novel cancer therapeutics by targeting cells in a particular state of inactivity called senescence. The research is led by David Gewirtz, Ph.D., member of the Developmental Therapeutics research program at Massey and professor of pharmacology and toxicology at the VCU School of Medicine; Hisashi Harada, Ph.D., member of the Cancer Cell Signaling research program at Massey and associate professor at the Philips Institute for Oral Health Research at the VCU School of Dentistry; and Joseph Landry, Ph.D., member of the Cancer Molecular Genetics research program at Massey and assistant professor of human and molecular genetics at the VCU School of Medicine.

"It is entirely unclear how tumor cells might survive in the body for months or years, only to break out of dormancy and give rise to recurrent disease," Gewirtz said. "Our studies have suggested that one form of tumor dormancy might be that of senescence, a prolonged form of growth arrest that can be shown to be induced in tumor cells by chemotherapeutic drugs and radiation. If dormant tumors are, in fact, in this state of senescence, it is possible that they might be susceptible to elimination by senolytic agents (a class of small molecules under investigation to see if they can selectively induce death of senescent cells)."

Cellular senescence has long been understood as a DNA damage response in which normal cells cease to divide; however, its role in cancer cells is largely unknown. Senolytic agents are drugs that are programmed to seek out and kill cells in a state of senescence.

Research led by Gewirtz and recently published in Biochemical Pharmacology demonstrated that breast and lung cancer cells provoked into a state of senescence by chemotherapy were able to eventually recover and re-multiply at a rapid pace in culture and in mice. This finding challenged a commonly held notion about senescent cancer cells.

"The prevailing viewpoint for many years has been that senescence is an irreversible form of growth arrest," explained Gewirtz. "During the course of the last few years, the scientific community has come to accept that this is not necessarily the case and that cells can re-emerge from senescence and give rise to tumors, where the tumors are sometimes more aggressive than the original disease."

Based on these findings, Gewirtz published an article in Cancer Research suggesting that senescent cells are of significant importance in further research seeking to better understand how tumor cells evade existing cancer therapies and hide in a state of dormancy and to inform the development of novel cancer therapeutics.

"If senescence is a form of tumor dormancy, then tumor cells that escape from senescence and survive will, in some cases, be the source of recurrent disease. Their elimination would provide a survival advantage for patients with cancer," Gewirtz added.

As a means to further explore this concept, Gewirtz, Harada and Landry received a five-year, $1.2 million R01 grant from the National Cancer Institute to study whether senolytic drugs can effectively eliminate senescent-like lung tumor cells in order to prevent, or at least significantly suppress, cancer recurrence. They will test the ability of the drug ABT-263, a BCL-2 inhibitor, to target and destroy cells in a senescent state, and seek to determine the specific role that BCL-2 family proteins (genes that regulate cell death) play in regard to the destruction or preservation of dormant tumor cells.

It is unknown what roles the immune system plays in sustaining therapy-induced tumor dormancy.

"The immune system has been known for some time to control the growth of tumors," Landry said. "It is less clear how cancer therapies, and the senescence they induce, affect this natural response. They are likely to have complicated effects on the control of therapy-induced dormant cells."

One of the major goals of this study will be to establish the involvement of immune responses to tumor cell senescence caused by chemotherapy and radiation in the absence and presence of senolytic drugs.

"We also hope to establish a therapeutic strategy for the elimination of non-small cell lung cancer cells that have the potential to contribute to recurrent disease," Gewirtz said.
-end-
Additional collaborators on this research include Anthony Faber, Ph.D., co-leader of Massey's Developmental Therapeutics research program and assistant professor at the Philips Institute for Oral Health Research at the VCU School of Dentistry; Dipankar Bandyopadhyay, Ph.D., member of Massey's Cancer Prevention and Control research program and professor of biostatistics at the VCU School of Medicine; Xiang-Yang Wang, Ph.D., member of Massey's Cancer Molecular Genetics research program and professor of human and molecular genetics at the VCU School of Medicine; and Lynne Elmore of the American Cancer Society.

Virginia Commonwealth University, Massey Cancer Center

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.