Space travel and your joints

May 21, 2019

DETROIT - A novel Henry Ford Hospital study of mice aboard a Russian spaceflight may raise an intriguing question for the astronauts of tomorrow: Could traveling in space be bad for your joints?

Researchers found early signs of cartilage breakdown in the mice, suggesting that the reduced biomechanical forces of spaceflight are at play on the musculoskeletal system.

While it's premature to translate the finding to humans, this first-of-its kind study adds to a growing body of research about the health effects of spaceflight on the musculoskeletal system. Research has shown that living and working in space leads to many changes in the human body including the immune system, blood pressure and the shape of a person's eyes.

The study is published online in npg Microgravity, part of the Nature Partner Journals publishing group.

Jamie Fitzgerald, Ph.D., head of musculoskeletal genetics at Henry Ford's Department of Orthopedic Surgery and the study's lead author, says evidence of articular cartilage breakdown in the mice was "clear-cut."

"We believe this degradation is due to joint unloading caused by the near lack of gravity in space," he says. "If this were to happen to humans, given enough time, it would lead to major joint problems."

Researchers theorize that because the biomechanical forces in space are different from those on Earth, changes to the musculoskeletal system occur.

"We do know that tissues of the musculoskeletal system - bone, muscle, tendon, cartilage and ligament - are constantly subjected to 'loading' everywhere on Earth," Dr. Fitzgerald says.

"This comes from daily activities like walking and lifting, and the action of gravity pulling down on the musculoskeletal system. When that loading is removed due to weightlessness and near zero gravity in space, these tissues begin to degrade. The most dramatic example is the atrophy of muscle and demineralization of bones that occurs during spaceflight.

"This muscle and bone loss are reversed when the astronauts return to Earth. What is interesting about cartilage is that it's a tissue that repairs very poorly. This raises the important question of whether cartilage also degrades in space."

For the study, funded by a $100,000 NASA grant, Dr. Fitzgerald and his research team analyzed the molecular changes in the cartilage of mice that spent 30 days in animal research enclosures aboard an unmanned Russian Bion-M1 spacecraft in 2013. This included performing tissue stains and gene expression studies on the cartilage. The results were compared to mice observed on Earth during the same period.

Dr. Fitzgerald says the changes were consistent with those associated with osteoarthritis.

"Overall, we can say that after 30 days of microgravity, the process of cartilage degrading began," he says. "We saw changes in the gene expressions that were consistent with cartilage breakdown."

Video footage taken of the mice showed them floating around in their enclosure during the day. At night, the footage showed them struggling to climb over each and hang onto the grate inside the enclosure. "The mice did experience some loading on the joints as they tried to hang onto each other. It wasn't a complete unloading," Dr. Fitzgerald says.

In comparison, the mice on Earth showed no discernible cartilage degradation.

"When there's no gravity pulling down on the cartilage, it's not able to maintain its structure, its integrity," Dr. Fitzgerald says. "On Earth, every time you take a step to walk, you're loading that cartilage. In space, there's very little of that."

Dr. Fitzgerald says NASA is interested in developing a better understanding of what happens to the human body in space. More research is needed, he says, especially with a potential trip to Mars in the future.

"You may have some payload specialists and experienced pilots who already have some degree of pre-symptomatic cartilage damage at the time of their flight," Dr. Fitzgerald says. "Because cartilage in humans doesn't readily repair, the return to Earth could potentially bring long-term health problems."
-end-
MEDIA CONTACT: David Olejarz / David.Olejarz@hfhs.org / 313.874.4094

Henry Ford Health System

Related Cartilage Articles from Brightsurf:

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Changes in brain cartilage may explain why sleep helps you learn
The morphing structure of the brain's ''cartilage cells'' may regulate how memories change while you snooze, according to new research in eNeuro.

From the lab, the first cartilage-mimicking gel that's strong enough for knees
The thin, slippery layer of cartilage between the bones in the knee is magical stuff: strong enough to withstand a person's weight, but soft and supple enough to cushion the joint against impact, over decades of repeat use.

Little skates could hold the key to cartilage therapy in humans
Unlike humans and other mammals, the skeletons of sharks, skates, and rays are made entirely of cartilage and they continue to grow that cartilage throughout adulthood.

Can magnetic stem cells improve cartilage repair?
Cells equipped with superparamagnetic iron oxide nanoparticles (SPIOs) can be directed to a specific location by an external magnetic field, which is beneficial for tissue repair.

Common conditions keep many patients out of knee cartilage research studies
Issues like age or existing arthritis may preclude patients from participating in clinical studies for new therapies that could benefit them

Will MSC micropellets outperform single cells for cartilage regeneration?
Repair of cartilage injuries or defects is aided by the introduction of mesenchymal stem cells (MSCs), which can be incorporated into hydrogels to amplify their effects.

Exercise helps prevent cartilage damage caused by arthritis
Exercise helps to prevent the degradation of cartilage caused by osteoarthritis, according to a new study from Queen Mary University of London.

Cartilage could be key to safe 'structural batteries'
Your knees and your smartphone battery have some surprisingly similar needs, a University of Michigan professor has discovered, and that new insight has led to a 'structural battery' prototype that incorporates a cartilage-like material to make the batteries highly durable and easy to shape.

Potential arthritis treatment prevents cartilage breakdown
In an advance that could improve the treatment options available for osteoarthritis, MIT engineers have designed a new material that can administer drugs directly to the cartilage.

Read More: Cartilage News and Cartilage Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.