Long-term resilience of Earth's tropical forests in warmer world

May 21, 2020

A long-term assessment of the sensitivity of hundreds of tropical forest plots to increasing temperatures brings encouraging news: in the long run, Earth's tropical forests may be more resilient to a moderately warming world than short-term predictions have suggested. According to the new biome-wide study, tropical forests worldwide and their carbon storage capacities are likely to remain intact in moderate climate warming scenarios - so long as they're not further impacted by other human disturbances such as clearance, logging or fires. As plants and trees grow, they convert inorganic carbon into biomass, effectively storing vast amounts of atmospheric carbon dioxide into terrestrial flora. Understanding the land-atmosphere carbon flux of tropical forests - where nearly 40% of the world's carbon-hoarding vegetation resides - is particularly important to understanding potential climate change scenarios. However, the long-term sensitivity of tropical forests to climate warming, as well as how increased temperatures might affect carbon fluxes, are poorly constrained, representing some of the greatest sources of uncertainty in global climate change predictions. Long-term thermal sensitivity of tropical forests is often derived through short-term and inter-annual observations. However, the sensitivity of these scales may lead to overestimations in longer-term responses to climate change. To assess long-term climate controls on tropical forests directly, Martin Sullivan and colleagues measured biomass carbon and carbon flux in 590 globally distributed, permanent tropical forest plots. The results identify maximum temperature as the most important predictor of overall biomass; it depresses growth rates and reduces carbon storage by killing trees under hot, dry conditions. These adverse effects were most prominent when daytime high temperatures exceeded 32.2 °Celsius (C). Stabilizing global temperatures at 2 °C would push 71% of tropical forests beyond this threshold. Nevertheless, Sullivan et al. reveal greater long-term thermal resilience during moderate warming conditions than previous studies have implied, though, they say, this thermal adaptation potential may not be fully realized in all forests' future responses because of factors including the speed of temperature rises exceeding species' adaptive capabilities. The authors also emphasize that achieving the biome-wide climate resilience potential they document depends on both limiting heating and on large-scale conservation and restoration in forests.
-end-


American Association for the Advancement of Science

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.