Nav: Home

Scientists identify chemicals in noxious weed that 'disarm' deadly bacteria

May 21, 2020

Scientists have identified specific compounds from the Brazilian peppertree -- a weedy, invasive shrub in Florida -- that reduce the virulence of antibiotic-resistant staph bacteria. Scientific Reports published the research, demonstrating that triterpenoid acids in the red berries of the plant "disarm" dangerous staph bacteria by blocking its ability to produce toxins.

The work was led by the lab of Cassandra Quave, an assistant professor in Emory University's Center for the Study of Human Health and the Emory School of Medicine's Department of Dermatology. The researchers' laboratory experiments provide the first evidence that triterpenoid acids pack a punch against methicillin-resistant Staphylococcus aureus, known as MRSA.

The Brazilian peppertree (Schinus terebinthifolia), native to South America, is also abundant in Florida, where it forms dense thickets that crowd out native species. "It is a noxious weed that many people in Florida hate, for good reason," Quave says. "But, at the same time, there is this rich lore about the Brazilian Peppertree in the Amazon, where traditional healers have used the plant for centuries to treat skin and soft tissue infections."

Quave, a leader in the field of medical ethnobotany and a member of the Emory Antibiotic Resistance Center, studies how indigenous people incorporate plants in healing practices to uncover promising candidates for new drugs.

The Centers for Disease Control and Prevention calls antibiotic resistance "one of the biggest public health challenges of our time." Each year in the U.S., at least 2.8 million people get antibiotic-resistant infections, leading to more than 35,000 deaths.

"Even in the midst of the current viral pandemic of COVID-19, we can't forget about the issue of antibiotic resistance," Quave says. She notes that many COVID-19 patients are receiving antibiotics to deal with secondary infections brought on by their weakened conditions, raising concerns about a later surge in antibiotic-resistant infections.

In 2017, the Quave lab published the finding that a refined, flavone-rich mix of 27 compounds extracted from the berries of the Brazilian peppertree inhibits formation of skin lesions in mice infected with MRSA. The extract works not by killing the MRSA bacteria, but by repressing a gene that allows the bacteria cells to communicate with one another. Blocking that communication prevents the cells from taking collective action, which essentially disarms the bacteria by preventing it from excreting the toxins it uses to damage tissues. The body's immune system then stands a better chance of healing a wound.

That approach is different from the typical treatment of blasting deadly bacteria with drugs designed to kill them, which can help fuel the problem of antibiotic resistance. Some of the stronger bacteria may survive these drug onslaughts and proliferate, passing on their genes to offspring and leading to the evolution of deadly "super bugs."

For the current paper, the researchers wanted to narrow down the scope of 27 major compounds from the berries to isolate the specific chemicals involved in disarming MRSA. They painstakingly refined the original compounds, testing each new iteration for its potency on the bacteria. They also used a series of analytical chemistry techniques, including mass spectrometry, nuclear magnetic resonance spectroscopy and X-ray crystallography to gain a clear picture of the chemicals involved in the anti-virulence mechanism.

The results showed that three triterpenoid acids worked equally well at inhibiting MRSA from forming toxins in a petri dish, without harming human skin cells. And one of the triterpenoid acids worked particularly well at inhibiting the ability of MRSA to form lesions on the skin of mice. The researchers also demonstrated that the triterpenoid acids repressed not just one gene that MRSA uses to excrete toxins, but two genes involved in that process.

"Nature is the best chemist, hands down," Quave says. She adds that weeds, in particular, tend to have interesting chemical arsenals that they may use to protect them from diseases so they can more easily spread in new environments.

The research team plans to do further studies to test the triterpenoid acids as treatments for MRSA infections in animal models. If those studies are promising, the next step would be to work with medicinal chemists to optimize the compounds for efficacy, delivery and safety before testing on humans.

"Plants are so incredibly complex chemically that identifying and isolating particular extracts is like picking needles out of haystacks," Quave says. "When you're able to pluck out molecules with medicinal properties from these complex natural mixtures, that's a big step forward to understanding how some traditional medicines may work, and for advancing science towards a potential drug development pathway."
-end-
First authors of the current paper are Huaqiao Tang -- a former visiting scholar at Emory and a veterinarian at Sichuan Agricultural University in China -- and Gina Porras, an Emory post-doctoral fellow. In addition to senior author Quave, co-authors include Francois Chassagne and James Lyles, who are both members of the Quave lab; John Basca, director of Emory's X-ray Crystallography Center; and Alexander Horswill and Morgan Brown from the University of Colorado School of Medicine.

Emory Health Sciences

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.