First characterization of chikungunya viruses from Indian Ocean outbreak

May 22, 2006

Since late 2004, a large outbreak of chikungunya fever in the Indian Ocean has caused a public health crisis and alarmed international experts. A team of scientists led by Sylvain Brisse (of the Pasteur Institute) now reports the first molecular data on the viruses involved in the outbreak in the international open-access journal PLoS Medicine.

The outbreak affects the populations of Comoros, Mayotte, Madagascar, Mauritius, Seychelles, and Réunion. It is much larger than any previous outbreak, with up to one third of the populations of those islands (several hundred thousand people) infected. More recently, several states of India have also reported cases of the disease.

The disease is caused by the chikungunya virus, which is spread to humans by mosquito bites. It was first described in Tanzania in 1952 and has since been found in Africa, India, and South East Asia. The name is derived from a local Tanzanian word meaning "that which bends up", a reference to the stooped posture many patients develop as a result of painful inflammation of the joints commonly associated with the disease. Other symptoms of the disease include fever, headache, and a skin rash. There is no specific treatment available. Most patients get better after a few days, but the pain in the joints can persist for long after the other symptoms have disappeared.

Brisse and colleagues determined the entire genetic sequence of six virus samples isolated from patients in different places (five from Réunion and one from the Seychelles) and different times (three from early 2005 and three from later in 2005) during the outbreak. They also sequenced one of the viral genes (called E1) from virus samples taken from an additional 121 patients. The results show that the outbreak began with a strain related to East-African strains of the virus which subsequently developed into several distinct variants. All of the Indian Ocean sequences share unique molecular features that differ from strains of the virus involved in earlier outbreaks and suggest how the virus could have become more "aggressive". Experiments are now underway to test which of these features might be responsible for the apparent increase in the virus' ability to infect humans and cause disease.

As the authors note, the mosquitoes that transmit the Chikungunya virus in Africa and Asia are not limited to these areas--in fact they are the same ones that transmit yellow fever and dengue fever in many parts of the world--which raises the possibility that the chikungunya virus could spread and cause disease elsewhere.
-end-
Citation: Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, et al. (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3(7): e263.

PLEASE ADD THE LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.doi.org/10.1371/journal.pmed.0030263

PRESS-ONLY PREVIEW OF THE ARTICLE: http://www.plos.org/press/plme-03-07-brisse.pdf

CONTACT: Sylvain Brisse
Institut Pasteur
Plate-forme Génotypage des Pathogènes et Santé Publique (PF8)
28, rue du Dr. Roux
Paris, France
+33 1 40 61 36 58
sbrisse@pasteur.fr

About PLoS Medicine
PLoS Medicine is an open access, freely available international medical journal. It publishes original research that enhances our understanding of human health and disease, together with commentary and analysis of important global health issues. For more information, visit http://www.plosmedicine.org

About the Public Library of Science
The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource. For more information, visit http://www.plos.org

PLEASE MENTION THE OPEN-ACCESS JOURNAL PLoS MEDICINE (www.plosmedicine.org) AS THE SOURCE FOR THESE ARTICLES AND PROVIDE A LINK TO THE FREELY-AVAILABLE TEXT. THANK YOU.

All works published in PLoS Medicine are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

PLOS

Related Virus Articles from Brightsurf:

Researchers develop virus live stream to study virus infection
Researchers from the Hubrecht Institute and Utrecht University developed an advanced technique that makes it possible to monitor a virus infection live.

Will the COVID-19 virus become endemic?
A new article in the journal Science by Columbia Mailman School researchers Jeffrey Shaman and Marta Galanti explores the potential for the COVID-19 virus to become endemic, a regular feature producing recurring outbreaks in humans.

Smart virus
HSE University researchers have found microRNA molecules that are potentially capable of repressing the replication of human coronaviruses, including SARS-CoV-2.

COVID-19 - The virus and the vasculature
In severe cases of COVID-19, the infection can lead to obstruction of the blood vessels in the lung, heart and kidneys.

Lab-made virus mimics COVID-19 virus
Researchers at Washington University School of Medicine in St. Louis have created a virus in the lab that infects cells and interacts with antibodies just like the COVID-19 virus, but lacks the ability to cause severe disease.

Virus prevalence associated with habitat
Levels of virus infection in lobsters seem to be related to habitat and other species, new studies of Caribbean marine protected areas have shown.

Herpes virus decoded
The genome of the herpes simplex virus 1 was decoded using new methods.

A new biosensor for the COVID-19 virus
A team of researchers from Empa, ETH Zurich and Zurich University Hospital has succeeded in developing a novel sensor for detecting the new coronavirus.

How at risk are you of getting a virus on an airplane?
New 'CALM' model on passenger movement developed using Frontera supercomputer.

Virus multiplication in 3D
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies.

Read More: Virus News and Virus Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.