UF scientists restore sight to chickens with blinding disease

May 22, 2006

GAINESVILLE, Fla. -- University of Florida scientists have delivered a gene through an eggshell to give sight to a type of chicken normally born blind.

The finding, reported Tuesday (May 23) in the online journal Public Library of Science-Medicine, proves in principle that a similar treatment can be developed for an incurable form of childhood blindness.

"We were able to restore function to the photoreceptor cells in the retinas of an avian model of a disease that is one of the more common causes of inherited blindness in human infants," said Sue Semple-Rowland, Ph.D., an associate professor of neuroscience with UF's Evelyn F. and William L. McKnight Brain Institute. "The vision capabilities of the treated animals far exceeded our expectations."

The bird -- a type of Rhode Island Red chicken -- carries a genetic defect that prevents it from producing an enzyme essential for sight. The condition closely models a genetic disease in humans that causes Leber congenital amaurosis type 1, or LCA1. About 2,000 people in the United States are blind because they have a disease that falls in the LCA family.

"Enabling chickens that can't see to peck and eat after treatment is stunning," said Dr. Jean Bennett, a professor of ophthalmology and cell and developmental biology at the University of Pennsylvania who was not involved in the study but who participated in a landmark gene transfer experiment five years ago that restored vision to blind Briard dogs. "This is proof of concept using a unique vector, animal model and approach. One would hope this could happen in a human."

Semple-Rowland, a College of Medicine faculty member, has worked since 1986 to first discover the malfunctioning gene, known as GC1, and then to develop a viral therapy to treat it.

"I will always remember the first animal that we successfully treated," said Semple-Rowland, who is also a member of the UF Center for Vision Research and the UF Genetics Institute. "I thought I saw signs that the chick was responding visually to the environment, but I didn't want to believe it. Scientists always doubt what they see -- it's intrinsic to how we operate. So I did this simple little test, drawing little dots on a piece of paper. The chick, which was standing on the table, came over to the paper and started pecking at all of them. It was so exciting."

Later, more precise tests showed that of the seven treated chickens, five displayed near-normal visual behavior. Measurement of electrical activity in the retinas of the same five animals showed they responded to light. In comparison, tests on three untreated chickens showed no meaningful responses.

"This is an interesting gene-transfer technique that appears to restore function to light-sensitive cells in the retina," said Dr. Paul A. Sieving, director of the National Eye Institute of the National Institutes of Health, which partially funded the study. "An approach such as this could lead eventually to a vision-restoring therapy for children who suffer from blinding retinal diseases."

Like people, chickens possess color vision and function best in daylight. The predominant photoreceptor cell type in the chicken retina, the cone cell, is the same cell type that is essential for normal human vision.

To develop the treatment, UF scientists constructed a virus able to infect photoreceptors, delivering a normal copy of the GC1 gene to these cells. Using a very fine glass needle, they injected the viral vector into the developing nervous system of a chicken embryo through a tiny hole in the eggshell. The shell was resealed and the egg was incubated to hatching to produce a live chick.

"The process sounds straightforward but it really isn't," Semple-Rowland said. "It took quite a long time to build the vector, develop the injection procedure and figure out how to hatch the eggs. By doing the injection early during development, we actually treat the cells before they become photoreceptors."

Infants with LCA1 would receive an injection of the gene transfer agents directly into the eyeball during the first couple of years of life, bypassing embryonic treatment. That's important, researchers say, because a diagnosis of LCA1 is often not made until months after a child is born.

"There are only a few clues that an infant may have this disease," Semple-Rowland said. "Often parents will notice that their child doesn't seem to be smiling at or looking at faces. Children may also poke or rub their eyes, behaviors clinically known as oculo-digital signs that may produce sensations of sight."

Work remains to refine the viral delivery system that transfers the healthy genes to the photoreceptor cells. In addition, solutions have to be found to make the treatment long-lasting -- scientists have restored sight and slowed degeneration, but the retinal cells still degenerate.

But Semple-Rowland thinks the time necessary to turn these research results into a treatment for patients will be a fraction of the 20 years that have gone into discovering the genetic defect and developing a therapy for it.

"We can do amazing things in animal models," Semple-Rowland said, "but this work can't be done quickly. That's the hardest thing -- knowing there are people who need these treatments now. But we work as fast as we can. You'll see the first treatments for some of these genetic eye diseases soon, especially after the groundwork for an approved therapy is laid and the therapy works."
-end-


University of Florida

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.