Nav: Home

Wafer-thin magnetic materials developed for future quantum technologies

May 22, 2017

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets would be suitable for use as sensors, data storage devices or in a quantum computer, since the two-dimensional arrangement allows the magnification state of the individual atoms or molecules to be selected. For mathematical and geometrical reasons, however, it has so far not been possible to produce two-dimensional ferrimagnets.

Choice of materials makes the impossible possible

The scientists in Professor Thomas Jung's research groups at the Paul Scherrer Institute (PSI) and the Department of Physics at the University of Basel have now found a method of making a two-dimensional ferrimagnet.

The researchers first produce "phthalocyanines" -- hydrocarbon compounds with different magnetic centers composed of iron and manganese. When these phthalocyanines are applied to a gold surface, they arrange themselves into a checkerboard pattern in which molecules with iron and manganese centers alternate. The researchers were able to prove that the surface is magnetic, and that the magnetism of the iron and manganese is of different strengths and appears in opposing directions - all characteristics of a ferrimagnet.

"The decisive factor of this discovery is the electrically conductive gold substrate, which mediates the magnetic order," explains Dr. Jan Girovsky from the PSI, lead author of the study. "Without the gold substrate, the magnetic atoms would not sense each other and the material would not be magnetic."

The decisive effect of the conducting electrons in the gold substrate is shown by a physical effect detected in each magnetic atom using scanning tunnel spectroscopy. The experiments were conducted at various temperatures and thus provide evidence of the strength of the magnetic coupling in the new magnetic material. Model calculations confirmed the experimentally observed effect and indicated that special electrons attached to the surface in the gold substrate are responsible for this type of magnetism.

Nanoarchitecture leads to new magnetic materials

"The work shows that a clever combination of materials and a particular nanoarchitecture can be used to produce new materials that otherwise would be impossible," says Professor Nirmalya Ballav of the Indian Institute of Science Education and Research in Pune (India), who has been studying the properties of molecular nano-checkerboard architectures for several years with Jung. The magnetic molecules have great potential for a number of applications, since their magnetism can be individually investigated and also modified using scanning tunnel spectroscopy.
-end-


University of Basel

Related Data Storage Articles:

Discovery offers new avenue for next-generation data storage
The demands for data storage and processing have grown exponentially as the world becomes increasingly connected, emphasizing the need for new materials capable of more efficient data storage and data processing.
Magnetic whirls in future data storage devices
Magnetic (anti)skyrmions are microscopically small whirls that are found in special classes of magnetic materials.
Laser writing enables practical flat optics and data storage in glass
Femtosecond laser machining has emerged as an attractive technology enabling appications ranging from eye surgery to direct writing in the bulk of transparent materials.
Researchers report progress on molecular data storage system
A Brown University team has shown that they can store and retrieve more than 200 kilobytes of digital image files by encoding the data in mixtures of new custom libraries of small molecules.
Molecular eraser enables better data storage and computers for AI
Scientists have added a crucial tool to the atomic-scale manufacturing toolkit with major implications for today's data driven -- carbon-intensive -- world, according to new research from the University of Alberta in Canada.
Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.
Research overcomes key obstacles to scaling up DNA data storage
Researchers have developed new techniques for labeling and retrieving data files in DNA-based information storage systems, addressing two of the key obstacles to widespread adoption of DNA data storage technologies.
Discovery may lead to new materials for next-generation data storage
Research funded in part by the US Army identified properties in materials that could one day lead to applications such as more powerful data storage devices that continue to hold information even after a device has been powered off.
Electric skyrmions charge ahead for next-generation data storage
A team of researchers led by Berkeley Lab has observed chirality for the first time in polar skyrmions, in a material with reversible electrical properties -- a combination that could lead to more powerful data storage devices that continue to hold information, even after they've been turned off.
Advance boosts efficiency of flash storage in data centers
New architecture promises to cut in half the energy and physical space required to store and manage user data.
More Data Storage News and Data Storage Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.