Nav: Home

Better, cheaper healthcare with dry blood samples

May 22, 2017

A drop of blood on filter paper, allowed to dry and stored for future diagnostic purposes - considerably easier than the present-day, resource-consuming method using frozen blood samples in plastic tubes. In a new study, Uppsala researchers have successfully measured 92 different proteins in millimetre-sized circles punched out of dried samples. They have shown that this method has great potential to save resources, to the benefit of early diagnostics and treatment.

Stored blood samples are of utmost importance for finding disease markers that can be used for early detection of diseases, when they are still curable. Today, test tubes holding relatively large volumes (millilitres) of blood plasma are kept in big, energy-guzzling freezers at ?80°C. A patient must first go to a healthcare unit where a trained nurse obtains a venous blood sample, which is sent to a lab for centrifugal separation of plasma. The sample can then be analysed and/or saved in a biobank for future studies. This resource-consuming method means, for example, that Uppsala University Hospital currently saves only 1% of all samples in a biobank, while the rest are discarded after an initial analysis.

The new method could change this situation radically and have a crucial value for development of future healthcare. The study shows that very little happens to proteins when they are allowed to dry. In many cases, they remain completely unaltered after 30 years, or change only minimally. Consequently, dried samples could be used for health services' routine checks. These could be performed in the fast-growing laboratory service sector, enabling people to have their state of health investigated without engaging medical and health services. The samples could also be used to set up very large-scale biobanks. Costs in the healthcare sector would plunge, more samples could be analysed and a high proportion of all blood samples taken could be saved.

"This has several implications. First, you can prick your own finger and send in a dried blood spot by post. Second, at a minimal cost, it will be possible to build gigantic biobanks of samples obtained on a routine clinical basis. This means that samples can be taken before the clinical debut of a disease, to identify markers of value for early diagnosis, improving the scope for curative treatment," says Ulf Landegren, Professor of Molecular Medicine and head of the Molecular Tools research group.

In the present study, the scientists analysed dried blood spots (DBS). Some had been collected recently, while others had been preserved for up to 30 years in biobanks in Sweden and Denmark that store DBS samples taken from all newborn babies for screening of some 20 congenital metabolic disorders. These two biobanks keep their DBS at different temperatures: the Swedish one at +4°C and the Danish one at ?24°C. The samples were used to analyse levels of 92 proteins that are relevant in oncology. Wet plasma samples, kept at ?70°C for corresponding periods of time, were also used. In addition, in order to be able to distinguish the effects of the long-term storage, the researchers examined what happens to protein detection as an effect of the drying process.

"Our conclusion is that we can measure levels of 92 proteins with very high precision and sensitivity using PEA technology in the tiny, punched-out discs from a dried blood spot. The actual drying process has a negligible effect on the various proteins and the effect is reproducible, which means that it can be included in the calculation," says Johan Björkesten, a doctoral student at Uppsala University and the first author of the study.

Further development and method:

Interest in using biobanks to search for proteins or RNA molecules that can dynamically reflect disease progression is growing rapidly. Sample collections comprising many samples taken regularly from the same individuals are very important for identifying biomarkers of this type. This has two advantages. First, over time, individuals can serve as their own controls. Second, after a person has fallen ill, the many samples taken improve the scope for locating patient samples taken before the onset of the disease, in a phase in which early diagnosis can be particularly valuable. One precondition for this is the availability of large numbers of samples, collected regularly from many individuals. This makes it essential for costs of individual samples to be low and the entire process, from sampling to storage, to be very simple and preferably require no healthcare staff to be involved.

The use of DBS affords a range of advantages over using "wet" samples. Examples are minimal stress for patients since a tiny, self-administered prick on the finger suffices; costs of collection and storage are low; no highly trained staff are required for the sampling; samples can be sent by letter post; and storage conditions are simple. One of the major limitations of dried samples, on the other hand, has been the small quantity of blood taken, which rules out many traditional analytical methods.

Long-term DBS storage affects the detectability of certain proteins more than others. Most proteins remain completely intact after 30 years, or change only minimally, while measured levels of some proteins decrease so that half the quantity remains after a period of between 10 and 50 years. The researchers have also found that a relative low storage temperature is preferable for proteins that are affected by storage. Compared with storing wet plasma at ?70°C, they found that this preserved the proteins better than DBS storage at ?24°C. This part of the analysis was, however, complicated by some confounding factors that made the conclusion less clearcut.

The proximity extension assay (PEA) method allows detection of levels of 96 proteins (including 4 controls) from a disc 1.2 mm in diameter punched out of a dried blood spot (DBS) on filter paper. PEA, based on research at Uppsala University, has been developed into a commercial product, Proseek Multiplex, by the Uppsala company Olink. To date, the company has used the method to analyse a quarter of a million wet plasma samples.
Reference: Björkesten, et al. Stability of Proteins in Dried Blood Spot Biobanks. Molecular & Cellular Proteomics. DOI. 10.1074/mcp.RA117.000015

Uppsala University

Related Proteins Articles:

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
A brewer's tale of proteins and beer
The transformation of barley grains into beer is an old story, typically starring water, yeast and hops.
New tool for the crystallization of proteins
ETH researchers have developed a new method of crystallizing large membrane proteins in order to determine their structure.
New interaction mechanism of proteins discovered
UZH researchers have discovered a previously unknown way in which proteins interact with one another and cells organize themselves.
When proteins shake hands
Protein nanofibres often have outstanding properties such as a high stability, biodegradability, or antibacterial effect.
Proteins' fluorescence a little less mysterious
Rice University scientists use simulations to understand the mechanism behind a popular fluorescent protein used to monitor signals between neurons.
New study suggests health benefits of swapping animal proteins for plant proteins
Substituting one to two servings of animal proteins with plant proteins every day could lead to a small reduction in the three main cholesterol markers for cardiovascular disease prevention, a new study suggests.
More Proteins News and Proteins Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at