Nav: Home

Calcium dynamics regulating the timing of decision-making in C. elegans

May 22, 2017

Animals, like humans, make various decisions based on information from the environment: for example, what to eat, where to go, and who to mate. Such decision-making is thought to be characterized by (1) distinct choice of one option based on gradually changing and/or confusing environmental information and (2) the choice is quick when the information is clear but slow when unclear. Researches on decision-making from neurobiological aspect have been performed by using monkeys and rodents, although the details of the mechanisms have been unclear because their brain consists of more than hundreds of millions of nerve cells.

Tanimoto, Yamazoe-Umemoto and colleagues discovered that a tiny roundworm with only 302 nerve cells do "decision-making" during escape response from the aversive odor. Moreover, they found that the worms make decisions by calculating mathematical integration of the odor's information. First, the research team set up a robotic microscope that simultaneously measures the nerve activity and behavior of a worm in the virtual odor space. The nerve cell's activity was measured via concentration of calcium ion in the cell, and the team analyzed the changes in calcium concentration using a mathematical model.

Using the robotic microscope system, they found that, when a worm is trying to find out the favorable direction to move away from the odor, the calcium concentration in a nerve cell raises slowly according to the mathematical integration of the amount of decrease in the odor concentration, that is, it adds up for a certain period of time. And when the calcium concentration reaches to a certain value, the worm choose the direction as a "deliberate" decision. In contrast, when a worm happens to move in the unfavorable direction where the aversive odor increases, the calcium in another nerve cell raises rapidly according to the mathematical differentiation of the odor concentration for a rapid "reflex"-like response. Furthermore they found genes that enable the integration and/or differentiation.

In researches using the more complex animals, it is known that certain nerve cells in the brain integrate information and make a decision when reaching a certain level, which likely occurs also in humans. The research team's result showed that, surprisingly, the worm's nerve cell also integrates information for decision-making. A human gene similar to the one found in worms may also be involved in our decision-making.
-end-


Osaka University

Related Nerve Cells Articles:

How hearing loss can change the way nerve cells are wired
Even short-term blockages in hearing can lead to remarkable changes in the auditory system, altering the behavior and structure of nerve cells that relay information from the ear to the brain, according to a new University at Buffalo study.
Lab-grown nerve cells make heart cells throb
Researchers at Johns Hopkins report that a type of lab-grown human nerve cells can partner with heart muscle cells to stimulate contractions.
Nerve-insulating cells more diverse than previously thought
Oligodendrocytes, a type of brain cell that plays a crucial role in diseases such as multiple sclerosis, are more diverse than have previously been thought, according to a new study by researchers at Karolinska Institutet in Sweden.
Aggregated protein in nerve cells can cause ALS
Persons with the serious disorder ALS, can have a genetic mutation that causes the protein SOD1 to aggregate in motor neurons in the brain and spinal cord.
Aggression causes new nerve cells to be generated in the brain
A group of neurobiologists from Russia and the USA, including Dmitry Smagin, Tatyana Michurina, and Grigori Enikolopov from Moscow Institute of Physics and Technology, have proven experimentally that aggression has an influence on the production of new nerve cells in the brain.
More Nerve Cells News and Nerve Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...